BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 18515725)

  • 1. The role of proline in the elastic mechanism of hydrated spider silks.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1948-57. PubMed ID: 18515725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1937-47. PubMed ID: 18515724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state NMR investigation of major and minor ampullate spider silk in the native and hydrated states.
    Holland GP; Jenkins JE; Creager MS; Lewis RV; Yarger JL
    Biomacromolecules; 2008 Feb; 9(2):651-7. PubMed ID: 18171016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline and processing of spider silks.
    Liu Y; Sponner A; Porter D; Vollrath F
    Biomacromolecules; 2008 Jan; 9(1):116-21. PubMed ID: 18052126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia.
    Brooks AE; Steinkraus HB; Nelson SR; Lewis RV
    Biomacromolecules; 2005; 6(6):3095-9. PubMed ID: 16283732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prey type, vibrations and handling interactively influence spider silk expression.
    Blamires SJ; Chao IC; Tso IM
    J Exp Biol; 2010 Nov; 213(Pt 22):3906-10. PubMed ID: 21037070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elasticity of spider silks.
    Liu Y; Shao Z; Vollrath F
    Biomacromolecules; 2008 Jul; 9(7):1782-6. PubMed ID: 18529075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks.
    Hayashi CY; Lewis RV
    J Mol Biol; 1998 Feb; 275(5):773-84. PubMed ID: 9480768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders.
    Rousseau ME; Lefèvre T; Pézolet M
    Biomacromolecules; 2009 Oct; 10(10):2945-53. PubMed ID: 19785404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface properties and conformation of Nephila clavipes spider recombinant silk proteins at the air-water interface.
    Renault A; Rioux-Dubé JF; Lefèvre T; Pezennec S; Beaufils S; Vié V; Tremblay M; Pézolet M
    Langmuir; 2009 Jul; 25(14):8170-80. PubMed ID: 19400566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk.
    Holland GP; Lewis RV; Yarger JL
    J Am Chem Soc; 2004 May; 126(18):5867-72. PubMed ID: 15125679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular studies of a novel dragline silk from a nursery web spider, Euprosthenops sp. (Pisauridae).
    Pouchkina-Stantcheva NN; McQueen-Mason SJ
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Aug; 138(4):371-6. PubMed ID: 15325337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.
    La Mattina C; Reza R; Hu X; Falick AM; Vasanthavada K; McNary S; Yee R; Vierra CA
    Biochemistry; 2008 Apr; 47(16):4692-700. PubMed ID: 18376847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consequences of forced silking.
    Ortlepp CS; Gosline JM
    Biomacromolecules; 2004; 5(3):727-31. PubMed ID: 15132653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanical design of spider silks: from fibroin sequence to mechanical function.
    Gosline JM; Guerette PA; Ortlepp CS; Savage KN
    J Exp Biol; 1999 Dec; 202(Pt 23):3295-303. PubMed ID: 10562512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the elastic nature of spider silk in pursuit of the next designer fiber.
    Brooks AE; Lewis RV
    Biomed Sci Instrum; 2004; 40():232-7. PubMed ID: 15133963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein.
    Tian M; Lewis RV
    Biochemistry; 2005 Jun; 44(22):8006-12. PubMed ID: 15924419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular nanosprings in spider capture-silk threads.
    Becker N; Oroudjev E; Mutz S; Cleveland JP; Hansma PK; Hayashi CY; Makarov DE; Hansma HG
    Nat Mater; 2003 Apr; 2(4):278-83. PubMed ID: 12690403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins.
    Hayashi CY; Shipley NH; Lewis RV
    Int J Biol Macromol; 1999; 24(2-3):271-5. PubMed ID: 10342774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like "spacer regions".
    Colgin MA; Lewis RV
    Protein Sci; 1998 Mar; 7(3):667-72. PubMed ID: 9541398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.