BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18516075)

  • 1. In vitro models of proarrhythmia.
    Lawrence CL; Pollard CE; Hammond TG; Valentin JP
    Br J Pharmacol; 2008 Aug; 154(7):1516-22. PubMed ID: 18516075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonclinical proarrhythmia models: predicting Torsades de Pointes.
    Lawrence CL; Pollard CE; Hammond TG; Valentin JP
    J Pharmacol Toxicol Methods; 2005; 52(1):46-59. PubMed ID: 15975832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts.
    Sugiyama A
    Br J Pharmacol; 2008 Aug; 154(7):1528-37. PubMed ID: 18552873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimizing repolarization-related proarrhythmic risk in drug development and clinical practice.
    Farkas AS; Nattel S
    Drugs; 2010 Mar; 70(5):573-603. PubMed ID: 20329805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends.
    Hoffmann P; Warner B
    J Pharmacol Toxicol Methods; 2006; 53(2):87-105. PubMed ID: 16289936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The continuing evolution of torsades de pointes liability testing methods: is there an end in sight?
    Lee N; Authier S; Pugsley MK; Curtis MJ
    Toxicol Appl Pharmacol; 2010 Mar; 243(2):146-53. PubMed ID: 20005885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anaesthetised methoxamine-sensitised rabbit model of torsades de pointes.
    Carlsson L
    Pharmacol Ther; 2008 Aug; 119(2):160-7. PubMed ID: 18558435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of clinical adverse event reports to models of arrhythmia risk.
    Ether N; Leishman D; Bailie M; Lauver A
    J Pharmacol Toxicol Methods; 2019; 100():106622. PubMed ID: 31398384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative electro-mechanical windows are required for drug-induced Torsades de Pointes in the anesthetized guinea pig.
    Guns PJ; Johnson DM; Weltens E; Lissens J
    J Pharmacol Toxicol Methods; 2012 Sep; 66(2):125-34. PubMed ID: 22516473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key clinical considerations for demonstrating the utility of preclinical models to predict clinical drug-induced torsades de pointes.
    Sager PT
    Br J Pharmacol; 2008 Aug; 154(7):1544-9. PubMed ID: 18536754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic.
    Hondeghem LM; Carlsson L; Duker G
    Circulation; 2001 Apr; 103(15):2004-13. PubMed ID: 11306531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to Prescribe Drugs With an Identified Proarrhythmic Liability.
    Thind M; Rodriguez I; Kosari S; Turner JR
    J Clin Pharmacol; 2020 Mar; 60(3):284-294. PubMed ID: 31743455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmural dispersion of repolarization as a preclinical marker of drug-induced proarrhythmia.
    Said TH; Wilson LD; Jeyaraj D; Fossa AA; Rosenbaum DS
    J Cardiovasc Pharmacol; 2012 Aug; 60(2):165-71. PubMed ID: 22561361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new preclinical biomarker for risk of Torsades de Pointes: drug-induced reduction of the cardiac electromechanical window.
    Vargas HM
    Br J Pharmacol; 2010 Dec; 161(7):1441-3. PubMed ID: 20698854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative - Update on progress.
    Colatsky T; Fermini B; Gintant G; Pierson JB; Sager P; Sekino Y; Strauss DG; Stockbridge N
    J Pharmacol Toxicol Methods; 2016; 81():15-20. PubMed ID: 27282641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-induced torsade de pointes. Incidence, management and prevention.
    Faber TS; Zehender M; Just H
    Drug Saf; 1994 Dec; 11(6):463-76. PubMed ID: 7727055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing proarrhythmic potential of environmental chemicals using a high throughput in vitro-in silico model with human induced pluripotent stem cell-derived cardiomyocytes.
    Lin HC; Rusyn I; Chiu WA
    ALTEX; 2024 Jan; 41(1):37-49. PubMed ID: 37921411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Proarrhythmic Potential of Drugs in Optogenetically Paced Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
    Patel D; Stohlman J; Dang Q; Strauss DG; Blinova K
    Toxicol Sci; 2019 Jul; 170(1):167-179. PubMed ID: 30912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beat-by-beat QT interval variability, but not QT prolongation per se, predicts drug-induced torsades de pointes in the anaesthetised methoxamine-sensitized rabbit.
    Jacobson I; Carlsson L; Duker G
    J Pharmacol Toxicol Methods; 2011; 63(1):40-6. PubMed ID: 20451633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium.
    Sager PT; Gintant G; Turner JR; Pettit S; Stockbridge N
    Am Heart J; 2014 Mar; 167(3):292-300. PubMed ID: 24576511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.