These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18516193)

  • 1. Reflective terahertz imaging of porcine skin burns.
    Taylor ZD; Singh RS; Culjat MO; Suen JY; Grundfest WS; Lee H; Brown ER
    Opt Lett; 2008 Jun; 33(11):1258-60. PubMed ID: 18516193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz spectroscopy for the assessment of burn injuries in vivo.
    Arbab MH; Winebrenner DP; Dickey TC; Chen A; Klein MB; Mourad PD
    J Biomed Opt; 2013 Jul; 18(7):077004. PubMed ID: 23860943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo terahertz imaging of rat skin burns.
    Tewari P; Kealey CP; Bennett DB; Bajwa N; Barnett KS; Singh RS; Culjat MO; Stojadinovic A; Grundfest WS; Taylor ZD
    J Biomed Opt; 2012 Apr; 17(4):040503. PubMed ID: 22559669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo burn imaging using Mueller optical coherence tomography.
    Todorović M; Jiao S; Ai J; Pereda-Cubián D; Stoica G; Wang LV
    Opt Express; 2008 Jul; 16(14):10279-84. PubMed ID: 18607436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of burn injury in porcine skin with high-frequency ultrasonic imaging.
    Brink JA; Sheets PW; Dines KA; Etchison MR; Hanke CW; Sadove AM
    Invest Radiol; 1986 Aug; 21(8):645-51. PubMed ID: 3528037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Burn wound classification model using spatial frequency-domain imaging and machine learning.
    Rowland R; Ponticorvo A; Baldado M; Kennedy GT; Burmeister DM; Christy RJ; Bernal NP; Durkin AJ
    J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31134769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards medical terahertz sensing of skin hydration.
    Suen JY; Tewari P; Taylor ZD; Grundfest WS; Lee H; Brown ER; Culjat MO; Singh RS
    Stud Health Technol Inform; 2009; 142():364-8. PubMed ID: 19377185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-imaging system for burn depth diagnosis.
    Ganapathy P; Tamminedi T; Qin Y; Nanney L; Cardwell N; Pollins A; Sexton K; Yadegar J
    Burns; 2014 Feb; 40(1):67-81. PubMed ID: 23790396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. THz interferometric imaging using subwavelength plastic fiber based THz endoscopes.
    Lu JY; Kuo CC; Chiu CM; Chen HW; Hwang YJ; Pan CL; Sun CK
    Opt Express; 2008 Feb; 16(4):2494-501. PubMed ID: 18542328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terahertz imaging system based on a backward-wave oscillator.
    Dobroiu A; Yamashita M; Ohshima YN; Morita Y; Otani C; Kawase K
    Appl Opt; 2004 Oct; 43(30):5637-46. PubMed ID: 15534995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz sensing of corneal hydration.
    Singh RS; Tewari P; Bourges JL; Hubschman JP; Bennett DB; Taylor ZD; Lee H; Brown ER; Grundfest WS; Culjat MO
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3021-4. PubMed ID: 21095725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrophotometric intracutaneous analysis: a novel imaging technique in the assessment of acute burn depth.
    Tehrani H; Moncrieff M; Philp B; Dziewulski P
    Ann Plast Surg; 2008 Oct; 61(4):437-40. PubMed ID: 18812717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflection-optical multispectral imaging method for objective determination of burn depth.
    Eisenbeiss W; Marotz J; Schrade JP
    Burns; 1999 Dec; 25(8):697-704. PubMed ID: 10630849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2013 Nov; 40(11):111910. PubMed ID: 24320443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of image quality in terahertz pulsed imaging using test objects.
    Fitzgerald AJ; Berry E; Miles RE; Zinovev NN; Smith MA; Chamberlain JM
    Phys Med Biol; 2002 Nov; 47(21):3865-73. PubMed ID: 12452578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous-wave circular polarization terahertz imaging.
    Martin JP; Joseph CS; Giles RH
    J Biomed Opt; 2016 Jul; 21(7):70502. PubMed ID: 27420650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of Terahertz Imaging Technology in the Assessment of Burn Injuries].
    Zhu X; He X; Wang P; Gao D; Qiu Y; He Q; Wu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):184-7. PubMed ID: 27382762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging.
    Crouzet C; Nguyen JQ; Ponticorvo A; Bernal NP; Durkin AJ; Choi B
    Burns; 2015 Aug; 41(5):1058-63. PubMed ID: 25814299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz Imaging of Cutaneous Edema: Correlation With Magnetic Resonance Imaging in Burn Wounds.
    Bajwa N; Sung S; Ennis DB; Fishbein MC; Nowroozi BN; Ruan D; Maccabi A; Alger J; John MAS; Grundfest WS; Taylor ZD
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2682-2694. PubMed ID: 28141514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuated internal reflection terahertz imaging.
    Wojdyla A; Gallot G
    Opt Lett; 2013 Jan; 38(2):112-4. PubMed ID: 23454932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.