These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18516244)

  • 1. Interference of surface plasmon resonances causes enhanced depolarized light scattering from metal nanoparticles.
    Calander N; Gryczynski I; Gryczynski Z
    Chem Phys Lett; 2007 Feb; 434(4-6):326-330. PubMed ID: 18516244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can the light scattering depolarization ratio of small particles be greater than 1/3?
    Khlebtsov NG; Melnikov AG; Bogatyrev VA; Dykman LA; Alekseeva AV; Trachuk LA; Khlebtsov BN
    J Phys Chem B; 2005 Jul; 109(28):13578-84. PubMed ID: 16852700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and optical properties of anisotropic metal nanoparticles.
    Hao E; Schatz GC; Hupp JT
    J Fluoresc; 2004 Jul; 14(4):331-41. PubMed ID: 15617376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.
    Walsh GF; Forestiere C; Dal Negro L
    Opt Express; 2011 Oct; 19(21):21081-90. PubMed ID: 21997116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitaxially Grown Silicon Nanowires with a Gold Molecular Adhesion Layer for Core/Shell Structures with Compact Mie and Plasmon Resonances.
    Murphey CGE; Park JS; Kim S; Cahoon JF
    ACS Nano; 2023 Nov; 17(21):21739-21748. PubMed ID: 37890020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate.
    Spinelli P; van Lare C; Verhagen E; Polman A
    Opt Express; 2011 May; 19 Suppl 3():A303-11. PubMed ID: 21643371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometrical Mie theory for resonances in nanoparticles of any shape.
    Papoff F; Hourahine B
    Opt Express; 2011 Oct; 19(22):21432-44. PubMed ID: 22108993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance.
    Hu M; Novo C; Funston A; Wang H; Staleva H; Zou S; Mulvaney P; Xia Y; Hartland GV
    J Mater Chem; 2008; 18(17):1949-1960. PubMed ID: 18846243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic Sommerfeld resonances in nanorods at grazing incidences.
    Feng S; Halterman K; Overfelt PL; Bowling D
    Opt Express; 2009 Oct; 17(22):19823-41. PubMed ID: 19997204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing.
    Sarychev AK; Ivanov A; Lagarkov A; Barbillon G
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30598001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of Fano resonances in all-dielectric nanoparticle oligomers.
    Chong KE; Hopkins B; Staude I; Miroshnichenko AE; Dominguez J; Decker M; Neshev DN; Brener I; Kivshar YS
    Small; 2014 May; 10(10):1985-90. PubMed ID: 24616191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the optical properties of pyramidal nanoparticle arrays.
    Henzie J; Shuford KL; Kwak ES; Schatz GC; Odom TW
    J Phys Chem B; 2006 Jul; 110(29):14028-31. PubMed ID: 16854094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoupling and tuning the light absorption and scattering resonances in metallic composite nanostructures.
    Danan Y; Ramon Y; Azougi J; Douplik A; Zalevsky Z
    Opt Express; 2015 Nov; 23(22):29089-99. PubMed ID: 26561178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.
    Truong PL; Ma X; Sim SJ
    Nanoscale; 2014 Feb; 6(4):2307-15. PubMed ID: 24413584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.