These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 18516293)
1. Frequent loss of TIMP-3 expression in progression of esophageal and gastric adenocarcinomas. Gu P; Xing X; Tänzer M; Röcken C; Weichert W; Ivanauskas A; Pross M; Peitz U; Malfertheiner P; Schmid RM; Ebert MP Neoplasia; 2008 Jun; 10(6):563-72. PubMed ID: 18516293 [TBL] [Abstract][Full Text] [Related]
2. Tissue inhibitor of metalloproteinase-3 (TIMP-3) gene is methylated in the development of esophageal adenocarcinoma: loss of expression correlates with poor prognosis. Darnton SJ; Hardie LJ; Muc RS; Wild CP; Casson AG Int J Cancer; 2005 Jun; 115(3):351-8. PubMed ID: 15688381 [TBL] [Abstract][Full Text] [Related]
3. Methylated TIMP-3 DNA in body fluids is an independent prognostic factor for gastric cancer. Yu JL; Lv P; Han J; Zhu X; Hong LL; Zhu WY; Wang XB; Wu YC; Li P; Ling ZQ Arch Pathol Lab Med; 2014 Nov; 138(11):1466-73. PubMed ID: 25357107 [TBL] [Abstract][Full Text] [Related]
4. Aberrant methylation of secreted frizzled-related protein genes in esophageal adenocarcinoma and Barrett's esophagus. Zou H; Molina JR; Harrington JJ; Osborn NK; Klatt KK; Romero Y; Burgart LJ; Ahlquist DA Int J Cancer; 2005 Sep; 116(4):584-91. PubMed ID: 15825175 [TBL] [Abstract][Full Text] [Related]
5. Quantitative detection of TIMP-3 promoter hypermethylation and its prognostic significance in esophageal squamous cell carcinoma. Ninomiya I; Kawakami K; Fushida S; Fujimura T; Funaki H; Takamura H; Kitagawa H; Nakagawara H; Tajima H; Kayahara M; Ohta T Oncol Rep; 2008 Dec; 20(6):1489-95. PubMed ID: 19020732 [TBL] [Abstract][Full Text] [Related]
6. Association Between Tissue Inhibitor of Metalloproteinase-3 Gene Methylation and Gastric Cancer Risk: A Meta-Analysis. Cao J; Li Z; Yang L; Liu C; Luan X Genet Test Mol Biomarkers; 2016 Aug; 20(8):427-31. PubMed ID: 27314831 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional inactivation of the tissue inhibitor of metalloproteinase-3 gene by dna hypermethylation of the 5'-CpG island in human gastric cancer cell lines. Kang SH; Choi HH; Kim SG; Jong HS; Kim NK; Kim SJ; Bang YJ Int J Cancer; 2000 Jun; 86(5):632-5. PubMed ID: 10797283 [TBL] [Abstract][Full Text] [Related]
8. Epigenetic subgroups of esophageal and gastric adenocarcinoma with differential GATA5 DNA methylation associated with clinical and lifestyle factors. Wang X; Kang GH; Campan M; Weisenberger DJ; Long TI; Cozen W; Bernstein L; Wu AH; Siegmund KD; Shibata D; Laird PW PLoS One; 2011; 6(10):e25985. PubMed ID: 22028801 [TBL] [Abstract][Full Text] [Related]
9. Ectopic expression of guanylyl cyclase C in adenocarcinomas of the esophagus and stomach. Park J; Schulz S; Haaf J; Kairys JC; Waldman SA Cancer Epidemiol Biomarkers Prev; 2002 Aug; 11(8):739-44. PubMed ID: 12163327 [TBL] [Abstract][Full Text] [Related]
10. Frequent methylation of eyes absent 4 gene in Barrett's esophagus and esophageal adenocarcinoma. Zou H; Osborn NK; Harrington JJ; Klatt KK; Molina JR; Burgart LJ; Ahlquist DA Cancer Epidemiol Biomarkers Prev; 2005 Apr; 14(4):830-4. PubMed ID: 15824152 [TBL] [Abstract][Full Text] [Related]
11. Characterization of cell lines established from human gastric-esophageal adenocarcinomas. Biologic phenotype and invasion potential. Altorki N; Schwartz GK; Blundell M; Davis BM; Kelsen DP; Albino AP Cancer; 1993 Aug; 72(3):649-57. PubMed ID: 8334620 [TBL] [Abstract][Full Text] [Related]
12. Genetic polymorphisms at TIMP3 are associated with survival of adenocarcinoma of the gastroesophageal junction. Bashash M; Shah A; Hislop G; Treml M; Bretherick K; Janoo-Gilani R; Leach S; Le N; Bajdik C; Brooks-Wilson A PLoS One; 2013; 8(3):e59157. PubMed ID: 23527119 [TBL] [Abstract][Full Text] [Related]
13. Human epididymis protein 4 is up-regulated in gastric and pancreatic adenocarcinomas. O'Neal RL; Nam KT; LaFleur BJ; Barlow B; Nozaki K; Lee HJ; Kim WH; Yang HK; Shi C; Maitra A; Montgomery E; Washington MK; El Rifai W; Drapkin RI; Goldenring JR Hum Pathol; 2013 May; 44(5):734-42. PubMed ID: 23084584 [TBL] [Abstract][Full Text] [Related]
14. Aberrant methylation of the CHFR gene in digestive tract cancer. Morioka Y; Hibi K; Sakai M; Koike M; Fujiwara M; Kodera Y; Ito K; Nakao A Anticancer Res; 2006; 26(3A):1791-5. PubMed ID: 16827108 [TBL] [Abstract][Full Text] [Related]
15. Loss of heterozygosity and immunohistochemistry of adenocarcinomas of the esophagus and gastric cardia. Marsman WA; Birjmohun RS; van Rees BP; Caspers E; Johan G; Offerhaus A; Bosma PJ; Jan J; van Lanschot B Clin Cancer Res; 2004 Dec; 10(24):8479-85. PubMed ID: 15623628 [TBL] [Abstract][Full Text] [Related]
16. Frequent loss of RUNX3 expression by promoter hypermethylation in gastric carcinoma. Oshimo Y; Oue N; Mitani Y; Nakayama H; Kitadai Y; Yoshida K; Ito Y; Chayama K; Yasui W Pathobiology; 2004; 71(3):137-43. PubMed ID: 15051926 [TBL] [Abstract][Full Text] [Related]
17. Epigenetic regulation of GATA4 expression by histone modification in AFP-producing gastric adenocarcinoma. Yamamura N; Kishimoto T Exp Mol Pathol; 2012 Aug; 93(1):35-9. PubMed ID: 22472323 [TBL] [Abstract][Full Text] [Related]
18. Methylation of the claudin‑3 promoter predicts the prognosis of advanced gastric adenocarcinoma. Zhang Z; Yu W; Chen S; Chen Y; Chen L; Zhang S Oncol Rep; 2018 Jul; 40(1):49-60. PubMed ID: 29749528 [TBL] [Abstract][Full Text] [Related]
19. Chromosomal numerical aberrations are frequent in oesophageal and gastric adenocarcinomas: a study using in-situ hybridization. Beuzen F; Dubois S; Fléjou JF Histopathology; 2000 Sep; 37(3):241-9. PubMed ID: 10971700 [TBL] [Abstract][Full Text] [Related]
20. Polymeric immunoglobulin receptor-negative tumors represent a more aggressive type of adenocarcinomas of distal esophagus and gastroesophageal junction. Gologan A; Acquafondata M; Dhir R; Sepulveda AR Arch Pathol Lab Med; 2008 Aug; 132(8):1295-301. PubMed ID: 18684029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]