These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1851673)

  • 1. Binding of viral glycoprotein with trypsin and its relation to virulency. II. Comparison between bovine and Streptomyces griseus trypsins.
    Miyata K; Kiho Y; Hosaka Y
    Cell Struct Funct; 1991 Feb; 16(1):39-43. PubMed ID: 1851673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of viral glycoprotein with trypsin and its relation to virulency. I. Initial step of binding.
    Shimamoto T; Shimamoto T; Okada Y; Yamada N; Miyata K; Kiho Y
    Cell Struct Funct; 1991 Feb; 16(1):31-8. PubMed ID: 2032307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypsin-catalysed synthesis of oligopeptide amides: comparison of catalytic efficiency among trypsins of different origin (bovine, Streptomyces griseus and chum salmon).
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    J Pept Sci; 2002 Sep; 8(9):521-8. PubMed ID: 12371705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Streptomyces griseus and bovine trypsin by active site analysis using fluorescent acyl groups.
    Tanizawa K; Nakano M; Kanaoka Y
    Biochim Biophys Acta; 1987 Jul; 913(3):292-9. PubMed ID: 3109486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins.
    Sekizaki H; Itoh K; Murakami M; Toyota E; Tanizawa K
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Nov; 127(3):337-46. PubMed ID: 11126764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the virulencies of some enveloped viruses from the structure of the cleavage recognition site of viral glycoproteins essential for infectivity. I. Calculation of interaction energy.
    Okada Y; Shima Y; Shimamoto T; Kusaka N; Kiho Y
    Cell Struct Funct; 1989 Dec; 14(6):707-19. PubMed ID: 2627709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medium optimization and application of an affinity column chromatography for streptomyces griseus trypsin production from the recombinant Streptomyces griseus.
    Chi WJ; Song JH; Oh EA; Park SW; Chang YK; Kim ES; Hong SK
    J Microbiol Biotechnol; 2009 Oct; 19(10):1191-6. PubMed ID: 19884779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anhydrotrypsin and trypsin: subtle difference in the active-site conformations detected by chemical modification and CD spectroscopy.
    Yokosawa H; Ishii S
    J Biochem; 1977 Mar; 81(3):657-63. PubMed ID: 405379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Production of Active Streptomyces griseus Trypsin with a Novel Auto-Catalyzed Strategy.
    Zhang Y; Ling Z; Du G; Chen J; Kang Z
    Sci Rep; 2016 Mar; 6():23158. PubMed ID: 26983398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and nucleotide sequence of Streptomyces griseus trypsin gene.
    Kim JC; Cha SH; Jeong ST; Oh SK; Byun SM
    Biochem Biophys Res Commun; 1991 Dec; 181(2):707-13. PubMed ID: 1755852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Tyr71 in Streptomyces trypsin on the recognition mechanism of structural protein substrates.
    Uesugi Y; Usuki H; Iwabuchi M; Hatanaka T
    FEBS J; 2009 Oct; 276(19):5634-46. PubMed ID: 19725878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pneumopathogenicity of a Sendai virus protease-activation mutant, TCs, which is sensitive to trypsin and chymotrypsin.
    Itoh M; Ming TD; Hayashi T; Mochizuki Y; Homma M
    J Virol; 1990 Nov; 64(11):5660-4. PubMed ID: 2170692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus.
    Stosová T; Sebela M; Rehulka P; Sedo O; Havlis J; Zdráhal Z
    Anal Biochem; 2008 May; 376(1):94-102. PubMed ID: 18261455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of catalytic efficiency and thermostability of recombinant Streptomyces griseus trypsin by introducing artificial peptide.
    Ling Z; Kang Z; Liu Y; Liu S; Chen J; Du G
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1819-27. PubMed ID: 24458877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylation of pronase trypsin.
    Awad WM; Ochoa MS
    Biochem Biophys Res Commun; 1974 Jul; 59(2):527-34. PubMed ID: 4211772
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain.
    Le TQ; Kawachi M; Yamada H; Shiota M; Okumura Y; Kido H
    Biol Chem; 2006 Apr; 387(4):467-75. PubMed ID: 16606346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin.
    Hatanaka Y; Tsunematsu H; Mizusaki K; Makisumi S
    Biochim Biophys Acta; 1985 Dec; 832(3):274-9. PubMed ID: 3935172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sequence and X-ray structure of the trypsin from Fusarium oxysporum.
    Rypniewski WR; Hastrup S; Betzel C; Dauter M; Dauter Z; Papendorf G; Branner S; Wilson KS
    Protein Eng; 1993 Jun; 6(4):341-8. PubMed ID: 8332590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dissection of Streptomyces trypsin on substrate recognition.
    Uesugi Y; Usuki H; Arima J; Iwabuchi M; Hatanaka T
    Biochim Biophys Acta; 2011 Oct; 1814(10):1295-304. PubMed ID: 21767670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.