BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18517251)

  • 1. Two independent ways of preparing hypercharged hydrolyzable polyaminorotaxane.
    Pérès B; Richardeau N; Jarroux N; Guégan P; Auvray L
    Biomacromolecules; 2008 Jul; 9(7):2007-13. PubMed ID: 18517251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The synthesis of a multiblock osteotropic polyrotaxane by copper(I)-catalyzed huisgen 1,3-dipolar cycloaddition.
    Hein CD; Liu XM; Chen F; Cullen DM; Wang D
    Macromol Biosci; 2010 Dec; 10(12):1544-56. PubMed ID: 20954201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot synthesis of a polyrotaxane via selective threading of a PEI-b-PEG-b-PEI copolymer.
    Choi HS; Ooya T; Yui N
    Macromol Biosci; 2006 Jun; 6(6):420-4. PubMed ID: 16761273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High conversion synthesis of pyrene end functionalized polyrotaxane based on poly(ethylene oxide) and alpha-cyclodextrins.
    Jarroux N; Guégan P; Cheradame H; Auvray L
    J Phys Chem B; 2005 Dec; 109(50):23816-22. PubMed ID: 16375366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of a polydisperse polyrotaxane based on poly(ethylene oxide) and α-cyclodextrins using nanoelectrospray and LTQ-Orbitrap.
    Przybylski C; Jarroux N
    Anal Chem; 2011 Nov; 83(22):8460-7. PubMed ID: 21958205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the supramolecular structure of aminated polyrotaxanes toward enhanced cellular internalization.
    Yokoyama N; Seo JH; Tamura A; Sasaki Y; Yui N
    Macromol Biosci; 2014 Mar; 14(3):359-68. PubMed ID: 24634263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a biocleavable polyrotaxane-plasmid DNA (pDNA) polyplex and its use for the rapid nonviral delivery of pDNA to cell nuclei.
    Yamashita A; Yui N; Ooya T; Kano A; Maruyama A; Akita H; Kogure K; Harashima H
    Nat Protoc; 2006; 1(6):2861-9. PubMed ID: 17406545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of alpha-cyclodextrin-terminated polyrotaxane consisting of beta-cyclodextrins and pluronic as a building block of a biodegradable network.
    Ooya T; Ito A; Yui N
    Macromol Biosci; 2005 May; 5(5):379-83. PubMed ID: 15895475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Novel Core Cross-Linked Star-Based Polyrotaxane End-Capped via "CuAAC" Click Chemistry.
    Fu Q; Ren JM; Tan S; Xu J; Qiao GG
    Macromol Rapid Commun; 2012 Dec; 33(24):2109-14. PubMed ID: 22965763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strategy to assemble achiral ligands to chiral helical polyrotaxane structures.
    Zeng JP; Cong H; Chen K; Xue SF; Zhang YQ; Zhu QJ; Liu JX; Tao Z
    Inorg Chem; 2011 Jul; 50(14):6521-5. PubMed ID: 21696140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suspending Polyrotaxane Dissociation via Photo-Reversible Capping of Terminals.
    Arisaka Y; Yui N
    Macromol Rapid Commun; 2019 Oct; 40(20):e1900323. PubMed ID: 31429992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular control of polyplex dissociation and cell transfection: efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes.
    Yamashita A; Kanda D; Katoono R; Yui N; Ooya T; Maruyama A; Akita H; Kogure K; Harashima H
    J Control Release; 2008 Oct; 131(2):137-44. PubMed ID: 18700157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyrotaxane composed of poly-L-lactide and alpha-cyclodextrin exhibiting protease-triggered hydrolysis.
    Ohya Y; Takamido S; Nagahama K; Ouchi T; Katoono R; Yui N
    Biomacromolecules; 2009 Aug; 10(8):2261-7. PubMed ID: 19572640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A.
    Ooya T; Eguchi M; Yui N
    J Am Chem Soc; 2003 Oct; 125(43):13016-7. PubMed ID: 14570461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoreversible sol-gel transition of an aqueous solution of polyrotaxane composed of highly methylated alpha-cyclodextrin and polyethylene glycol.
    Kidowaki M; Zhao C; Kataoka T; Ito K
    Chem Commun (Camb); 2006 Oct; (39):4102-3. PubMed ID: 17024262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of polyrotaxanes consisting of cationic alpha-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers.
    Yang C; Wang X; Li H; Goh SH; Li J
    Biomacromolecules; 2007 Nov; 8(11):3365-74. PubMed ID: 17929967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization, and pH-triggered dethreading of alpha-cyclodextrin-poly(ethylene glycol) polyrotaxanes bearing cleavable endcaps.
    Loethen S; Ooya T; Choi HS; Yui N; Thompson DH
    Biomacromolecules; 2006 Sep; 7(9):2501-6. PubMed ID: 16961310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducible polyrotaxane-based pseudo-comb polycations via consecutive ATRP processes for gene delivery.
    Wen C; Hu Y; Xu C; Xu FJ
    Acta Biomater; 2016 Mar; 32():110-119. PubMed ID: 26712599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular and biomimetic polypseudorotaxane/glycopolymer biohybrids: synthesis, glucose-surfaced nanoparticles, and recognition with lectin.
    Dai XH; Dong CM; Yan D
    J Phys Chem B; 2008 Mar; 112(12):3644-52. PubMed ID: 18318528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery.
    Li J; Loh XJ
    Adv Drug Deliv Rev; 2008 Jun; 60(9):1000-17. PubMed ID: 18413280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.