BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18517251)

  • 21. Synthesis of cyclodextrin-based polyrotaxanes and polycatenanes for supramolecular pharmaceutical sciences.
    Higashi T; Taharabaru T; Motoyama K
    Carbohydr Polym; 2024 Aug; 337():122143. PubMed ID: 38710552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of nitric oxide generative polyrotaxane.
    Lee WK; Kobayashi J; Ooya T; Park KD; Yui N
    J Biomater Sci Polym Ed; 2002; 13(10):1153-61. PubMed ID: 12484490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials surfaces.
    Inoue Y; Ye L; Ishihara K; Yui N
    Colloids Surf B Biointerfaces; 2012 Jan; 89():223-7. PubMed ID: 21974908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and structural analysis of polyrotaxane fibers and films.
    Sakai Y; Ueda K; Katsuyama N; Shimizu K; Sato S; Kuroiwa J; Araki J; Teramoto A; Abe K; Yokoyama H; Ito K
    J Phys Condens Matter; 2011 Jul; 23(28):284108. PubMed ID: 21709323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular fibers and wires in solid-state and solution self-assemblies of cyclodextrin [2]rotaxanes.
    Maniam S; Cieslinski MM; Lincoln SF; Onagi H; Steel PJ; Willis AC; Easton CJ
    Org Lett; 2008 May; 10(10):1885-8. PubMed ID: 18410119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro biocompatibility assessment of sulfonated polyrotaxane-immobilized polyurethane surfaces.
    Park HD; Lee WK; Ooya T; Park KD; Kim YH; Yui N
    J Biomed Mater Res A; 2003 Sep; 66(3):596-604. PubMed ID: 12918043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, characterization and in vitro evaluation of a series of novel polyrotaxane-based delivery system for artesunate.
    Gong XS; Jiang RJ; Liao XL; Xie HD; Ma X; Gao CZ; Yang B; Zhao YL
    Carbohydr Res; 2015 Aug; 412():7-14. PubMed ID: 25988495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol).
    Ooya T; Utsunomiya H; Eguchi M; Yui N
    Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mobility Tuning of Polyrotaxane Surfaces to Stimulate Myocyte Differentiation.
    Sekiya-Aoyama R; Arisaka Y; Yui N
    Macromol Biosci; 2020 Apr; 20(4):e1900424. PubMed ID: 32058659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman scattering study of water clusters around polyrotaxane and pseudopolyrotaxane supramolecular assemblies.
    Sano H; Ichi T; Kumashiro Y; Kontani K; Kuze T; Mizutani G; Ooya T; Yui N
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jan; 59(2):285-9. PubMed ID: 12685902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclodextrin-based supramolecular polymers.
    Harada A; Takashima Y; Yamaguchi H
    Chem Soc Rev; 2009 Apr; 38(4):875-82. PubMed ID: 19421567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of beta-cyclodextrin polyrotaxane: photodimerization of pseudo-polyrotaxane with 2-anthryl and triphenylmethyl groups at the ends of poly(propylene glycol).
    Okada M; Harada A
    Org Lett; 2004 Feb; 6(3):361-4. PubMed ID: 14748593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual effect of molecular mobility and functional groups of polyrotaxane surfaces on the fate of mesenchymal stem cells.
    Sekiya-Aoyama R; Arisaka Y; Hakariya M; Masuda H; Iwata T; Yoda T; Yui N
    Biomater Sci; 2021 Feb; 9(3):675-684. PubMed ID: 33559665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanospheres with polymerization ability coated by polyrotaxane.
    Osaki M; Takashima Y; Yamaguchi H; Harada A
    J Org Chem; 2009 Mar; 74(5):1858-63. PubMed ID: 19183040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Explanation for the electrophoresis behaviour of DNA condensation induced by pseudopolyrotaxane of different lengths.
    Hou S; Yang K; Feng XZ
    Electrophoresis; 2008 Nov; 29(21):4391-8. PubMed ID: 19016566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction and DNA condensation of cyclodextrin-based polypseudorotaxanes with anthryl grafts.
    Liu Y; Yu L; Chen Y; Zhao YL; Yang H
    J Am Chem Soc; 2007 Sep; 129(35):10656-7. PubMed ID: 17691791
    [No Abstract]   [Full Text] [Related]  

  • 37. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril.
    Liu Y; Ke CF; Zhang HY; Wu WJ; Shi J
    J Org Chem; 2007 Jan; 72(1):280-3. PubMed ID: 17194112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scutellarin-graft cationic β-cyclodextrin-polyrotaxane: Synthesis, characterization and DNA condensation.
    Qin Q; Ma X; Liao X; Yang B
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1028-1036. PubMed ID: 27987656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion.
    Seo JH; Yui N
    Biomaterials; 2013 Jan; 34(1):55-63. PubMed ID: 23079667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separated and aligned molecular fibres in solid state self-assemblies of cyclodextrin [2]rotaxanes.
    Onagi H; Carrozzini B; Cascarano GL; Easton CJ; Edwards AJ; Lincoln SF; Rae AD
    Chemistry; 2003 Dec; 9(24):5971-7. PubMed ID: 14679509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.