These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 18517417)
1. Conformation of a coarse-grained protein chain (an aspartic acid protease) model in effective solvent by a bond-fluctuating Monte Carlo simulation. Pandey RB; Farmer BL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031902. PubMed ID: 18517417 [TBL] [Abstract][Full Text] [Related]
2. Residue energy and mobility in sequence to global structure and dynamics of a HIV-1 protease (1DIFA) by a coarse-grained Monte Carlo simulation. Pandey RB; Farmer BL J Chem Phys; 2009 Jan; 130(4):044906. PubMed ID: 19191412 [TBL] [Abstract][Full Text] [Related]
3. Globular structure of a human immunodeficiency virus-1 protease (1DIFA dimer) in an effective solvent medium by a Monte Carlo simulation. Pandey RB; Farmer BL J Chem Phys; 2010 Mar; 132(12):125101. PubMed ID: 20370150 [TBL] [Abstract][Full Text] [Related]
4. Relaxation to native conformation of a bond-fluctuating protein chain with hydrophobic and polar nodes. Bjursell J; Pandey RB Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):052904. PubMed ID: 15600673 [TBL] [Abstract][Full Text] [Related]
5. Conformational response to solvent interaction and temperature of a protein (Histone h3.1) by a multi-grained monte carlo simulation. Pandey RB; Farmer BL PLoS One; 2013; 8(10):e76069. PubMed ID: 24204592 [TBL] [Abstract][Full Text] [Related]
6. Role of aspartic acid in collagen structure and stability: A molecular dynamics investigation. Raman SS; Parthasarathi R; Subramanian V; Ramasami T J Phys Chem B; 2006 Oct; 110(41):20678-85. PubMed ID: 17034259 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo simulation and molecular theory of tethered polyelectrolytes. Hehmeyer OJ; Arya G; Panagiotopoulos AZ; Szleifer I J Chem Phys; 2007 Jun; 126(24):244902. PubMed ID: 17614585 [TBL] [Abstract][Full Text] [Related]
8. Coarse-grained model of proteins incorporating atomistic detail of the active site. Neri M; Anselmi C; Cascella M; Maritan A; Carloni P Phys Rev Lett; 2005 Nov; 95(21):218102. PubMed ID: 16384187 [TBL] [Abstract][Full Text] [Related]
9. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models. Liu Z; Chan HS J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482 [TBL] [Abstract][Full Text] [Related]
10. Scaffolding of an antimicrobial peptide (KSL) by a scale-down coarse-grained approach. Hissam RS; Farmer BL; Pandey RB Phys Chem Chem Phys; 2011 Dec; 13(48):21262-72. PubMed ID: 22031450 [TBL] [Abstract][Full Text] [Related]
11. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta. Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040 [TBL] [Abstract][Full Text] [Related]
12. Effect of monomer sequences on conformations of copolymers grafted on spherical nanoparticles: a Monte Carlo simulation study. Seifpour A; Spicer P; Nair N; Jayaraman A J Chem Phys; 2010 Apr; 132(16):164901. PubMed ID: 20441304 [TBL] [Abstract][Full Text] [Related]
13. A macromolecule in a solvent: adaptive resolution molecular dynamics simulation. Praprotnik M; Delle Site L; Kremer K J Chem Phys; 2007 Apr; 126(13):134902. PubMed ID: 17430062 [TBL] [Abstract][Full Text] [Related]
14. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
15. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK; Liwo A; Scheraga HA J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials. Hassan SA; Mehler EL; Zhang D; Weinstein H Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo simulation of a film growth with reactive hydrophobic, polar, and aqueous components by a covalent bond fluctuating model. Yang S; Pandey RB J Chem Phys; 2007 Apr; 126(16):164708. PubMed ID: 17477625 [TBL] [Abstract][Full Text] [Related]
18. Molecular simulations of the fluctuating conformational dynamics of intrinsically disordered proteins. Smith WW; Schreck CF; Hashem N; Soltani S; Nath A; Rhoades E; O'Hern CS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041910. PubMed ID: 23214618 [TBL] [Abstract][Full Text] [Related]
19. Distinction in binding of peptides (P2E) and its mutations (P2G, P2Q) to a graphene sheet via a hierarchical coarse-grained Monte Carlo simulation. Pandey RB; Farmer BL J Chem Phys; 2013 Oct; 139(16):164901. PubMed ID: 24182073 [TBL] [Abstract][Full Text] [Related]
20. Multiscale mode dynamics of a tethered membrane. Pandey RB; Anderson KL; Farmer BL Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061913. PubMed ID: 17677306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]