BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 18517426)

  • 1. Probabilistic approach to a proliferation and migration dichotomy in tumor cell invasion.
    Fedotov S; Iomin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031911. PubMed ID: 18517426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration and proliferation dichotomy in tumor-cell invasion.
    Fedotov S; Iomin A
    Phys Rev Lett; 2007 Mar; 98(11):118101. PubMed ID: 17501094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of intrinsic in vitro cellular mechanisms for glioma invasion.
    Tektonidis M; Hatzikirou H; Chauvière A; Simon M; Schaller K; Deutsch A
    J Theor Biol; 2011 Oct; 287():131-47. PubMed ID: 21816160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment.
    Stein AM; Demuth T; Mobley D; Berens M; Sander LM
    Biophys J; 2007 Jan; 92(1):356-65. PubMed ID: 17040992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Markovian models for migration-proliferation dichotomy of cancer cells: anomalous switching and spreading rate.
    Fedotov S; Iomin A; Ryashko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061131. PubMed ID: 22304064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CXCR4 receptor positive spheroid forming cells are responsible for tumor invasion in vitro.
    Krohn A; Song YH; Muehlberg F; Droll L; Beckmann C; Alt E
    Cancer Lett; 2009 Jul; 280(1):65-71. PubMed ID: 19286309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autologous confrontation of brain tumor derived spheroids with human dermal spheroids.
    de Ridder L
    Anticancer Res; 1997; 17(6B):4119-20. PubMed ID: 9428344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain tumor invasion model system using organotypic brain-slice culture as an alternative to in vivo model.
    Jung S; Kim HW; Lee JH; Kang SS; Rhu HH; Jeong YI; Yang SY; Chung HY; Bae CS; Choi C; Shin BA; Kim KK; Ahn KY
    J Cancer Res Clin Oncol; 2002 Sep; 128(9):469-76. PubMed ID: 12242510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction-subdiffusion equations for the A<=>B reaction.
    Sagués F; Shkilev VP; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):032102. PubMed ID: 18517441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical aspects of cancer invasion.
    Guiot C; Pugno N; Delsanto PP; Deisboeck TS
    Phys Biol; 2007 Dec; 4(4):P1-6. PubMed ID: 18185003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy.
    Pham K; Chauviere A; Hatzikirou H; Li X; Byrne HM; Cristini V; Lowengrub J
    J Biol Dyn; 2012; 6 Suppl 1(0 1):54-71. PubMed ID: 22873675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the brain tumour spheroid model: transcending current model limitations.
    Corcoran A; De Ridder LI; Del Duca D; Kalala OJ; Lah T; Pilkington GJ; Del Maestro RF
    Acta Neurochir (Wien); 2003 Sep; 145(9):819-24. PubMed ID: 14505114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model for pattern formation of glioma cells outside the tumor spheroid core.
    Kim Y; Lawler S; Nowicki MO; Chiocca EA; Friedman A
    J Theor Biol; 2009 Oct; 260(3):359-71. PubMed ID: 19596356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MiR-16-1 plays a role in reducing migration and invasion of glioma cells.
    Li X; Ling N; Bai Y; Dong W; Hui GZ; Liu D; Zhao J; Hu J
    Anat Rec (Hoboken); 2013 Mar; 296(3):427-32. PubMed ID: 23175429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating invasion with cellular automata: connecting cell-scale and population-scale properties.
    Simpson MJ; Merrifield A; Landman KA; Hughes BD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021918. PubMed ID: 17930076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398.
    Joki T; Heese O; Nikas DC; Bello L; Zhang J; Kraeft SK; Seyfried NT; Abe T; Chen LB; Carroll RS; Black PM
    Cancer Res; 2000 Sep; 60(17):4926-31. PubMed ID: 10987308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basal caspase-3 activity promotes migration, invasion, and vasculogenic mimicry formation of melanoma cells.
    Liu YR; Sun B; Zhao XL; Gu Q; Liu ZY; Dong XY; Che N; Mo J
    Melanoma Res; 2013 Aug; 23(4):243-53. PubMed ID: 23695439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LAP3 promotes glioma progression by regulating proliferation, migration and invasion of glioma cells.
    He X; Huang Q; Qiu X; Liu X; Sun G; Guo J; Ding Z; Yang L; Ban N; Tao T; Wang D
    Int J Biol Macromol; 2015 Jan; 72():1081-9. PubMed ID: 25453285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suberoylanilide hydroxamic acid limits migration and invasion of glioma cells in two and three dimensional culture.
    An Z; Gluck CB; Choy ML; Kaufman LJ
    Cancer Lett; 2010 Jun; 292(2):215-27. PubMed ID: 20060208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glioma cell invasion visualized by scanning confocal laser microscopy in an in vitro co-culture system.
    Nygaard SJ; Pedersen PH; Mikkelsen T; Terzis AJ; Tysnes OB; Bjerkvig R
    Invasion Metastasis; 1995; 15(5-6):179-88. PubMed ID: 8765192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.