These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 18517461)
21. Amplitude death in the absence of time delays in identical coupled oscillators. Karnatak R; Ramaswamy R; Prasad A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):035201. PubMed ID: 17930293 [TBL] [Abstract][Full Text] [Related]
22. Synchronization from disordered driving forces in arrays of coupled oscillators. Brandt SF; Dellen BK; Wessel R Phys Rev Lett; 2006 Jan; 96(3):034104. PubMed ID: 16486707 [TBL] [Abstract][Full Text] [Related]
23. Impossibility of asymptotic synchronization for pulse-coupled oscillators with delayed excitatory coupling. Wu W; Chen T Int J Neural Syst; 2009 Dec; 19(6):425-35. PubMed ID: 20039465 [TBL] [Abstract][Full Text] [Related]
24. Synchronization in networks of chaotic systems with time-delay coupling. Oguchi T; Nijmeijer H; Yamamoto T Chaos; 2008 Sep; 18(3):037108. PubMed ID: 19045482 [TBL] [Abstract][Full Text] [Related]
25. Synchronization properties of network motifs: influence of coupling delay and symmetry. D'Huys O; Vicente R; Erneux T; Danckaert J; Fischer I Chaos; 2008 Sep; 18(3):037116. PubMed ID: 19045490 [TBL] [Abstract][Full Text] [Related]
26. Dynamical robustness of coupled heterogeneous oscillators. Tanaka G; Morino K; Daido H; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052906. PubMed ID: 25353860 [TBL] [Abstract][Full Text] [Related]
27. Discretization of frequencies in delay coupled oscillators. Yanchuk S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036205. PubMed ID: 16241546 [TBL] [Abstract][Full Text] [Related]
28. Rapid synchronization through fast threshold modulation. Somers D; Kopell N Biol Cybern; 1993; 68(5):393-407. PubMed ID: 8476980 [TBL] [Abstract][Full Text] [Related]
29. Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays. Wang Z; Duan Z; Cao J Chaos; 2012 Mar; 22(1):013140. PubMed ID: 22463016 [TBL] [Abstract][Full Text] [Related]
30. External periodic driving of large systems of globally coupled phase oscillators. Antonsen TM; Faghih RT; Girvan M; Ott E; Platig J Chaos; 2008 Sep; 18(3):037112. PubMed ID: 19045486 [TBL] [Abstract][Full Text] [Related]
31. Echo phenomena in large systems of coupled oscillators. Ott E; Platig JH; Antonsen TM; Girvan M Chaos; 2008 Sep; 18(3):037115. PubMed ID: 19045489 [TBL] [Abstract][Full Text] [Related]
32. On partial contraction analysis for coupled nonlinear oscillators. Wang W; Slotine JJ Biol Cybern; 2005 Jan; 92(1):38-53. PubMed ID: 15650898 [TBL] [Abstract][Full Text] [Related]
34. Analytical calculation of the frequency shift in phase oscillators driven by colored noise: implications for electrical engineering and neuroscience. Galán RF Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036113. PubMed ID: 19905186 [TBL] [Abstract][Full Text] [Related]
35. Pinning synchronization of delayed neural networks. Zhou J; Wu X; Yu W; Small M; Lu JA Chaos; 2008 Dec; 18(4):043111. PubMed ID: 19123621 [TBL] [Abstract][Full Text] [Related]
36. Onset of synchronization in complex gradient networks. Wang X; Huang L; Guan S; Lai YC; Lai CH Chaos; 2008 Sep; 18(3):037117. PubMed ID: 19045491 [TBL] [Abstract][Full Text] [Related]
37. Characterizing an ensemble of interacting oscillators: the mean-field variability index. Sheppard LW; Hale AC; Petkoski S; McClintock PV; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012905. PubMed ID: 23410402 [TBL] [Abstract][Full Text] [Related]
38. Generalized synchronization in mutually coupled oscillators and complex networks. Moskalenko OI; Koronovskii AA; Hramov AE; Boccaletti S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036216. PubMed ID: 23031006 [TBL] [Abstract][Full Text] [Related]
39. Cluster and group synchronization in delay-coupled networks. Dahms T; Lehnert J; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016202. PubMed ID: 23005502 [TBL] [Abstract][Full Text] [Related]
40. Inferring connectivity of interacting phase oscillators. Yu D; Fortuna L; Liu F Chaos; 2008 Dec; 18(4):043101. PubMed ID: 19123611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]