These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18517554)

  • 1. Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation.
    Weron A; Magdziarz M; Weron K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036704. PubMed ID: 18517554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force.
    Magdziarz M; Weron A; Klafter J
    Phys Rev Lett; 2008 Nov; 101(21):210601. PubMed ID: 19113398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation.
    Gajda J; Magdziarz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving.
    Heinsalu E; Patriarca M; Goychuk I; Hänggi P
    Phys Rev Lett; 2007 Sep; 99(12):120602. PubMed ID: 17930490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional Fokker-Planck subdiffusion in alternating force fields.
    Heinsalu E; Patriarca M; Goychuk I; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041137. PubMed ID: 19518203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces.
    Henry BI; Langlands TA; Straka P
    Phys Rev Lett; 2010 Oct; 105(17):170602. PubMed ID: 21231032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional Fokker-Planck equation, solution, and application.
    Barkai E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046118. PubMed ID: 11308923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical approach to the fractional Klein-Kramers equation.
    Magdziarz M; Weron A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066708. PubMed ID: 18233944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractional Fokker-Planck equation for fractal media.
    Tarasov VE
    Chaos; 2005 Jun; 15(2):23102. PubMed ID: 16035878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subdiffusion in an external force field.
    Chen Y; Wang X; Deng W
    Phys Rev E; 2019 Apr; 99(4-1):042125. PubMed ID: 31108594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm.
    Runfola C; Vitali S; Pagnini G
    R Soc Open Sci; 2022 Nov; 9(11):221141. PubMed ID: 36340511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics and fractional Fokker-Planck equations.
    Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056111. PubMed ID: 11414965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous diffusion in nonhomogeneous media: time-subordinated Langevin equation approach.
    Srokowski T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):030102. PubMed ID: 24730774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient.
    Milovanov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047301. PubMed ID: 11308983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
    Grima R; Thomas P; Straube AV
    J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous diffusion with absorbing boundary.
    Kantor Y; Kardar M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061121. PubMed ID: 18233828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fokker-Planck equation with arbitrary dc and ac fields: continued fraction method.
    Lee CK; Gong J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011104. PubMed ID: 21867110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Lévy Stable Processes.
    Anderson J; Moradi S; Rafiq T
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fokker-Planck equation of the reduced Wigner function associated to an Ohmic quantum Langevin dynamics.
    Colmenares PJ
    Phys Rev E; 2018 May; 97(5-1):052126. PubMed ID: 29906902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.