These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 18517615)

  • 1. Stripe formation in an immiscible polymer blend under electric and shear-flow fields.
    Na YH; Shibuya T; Ujiie S; Nagaya T; Orihara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041405. PubMed ID: 18517615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage shear modulus of columnar structure formed in an immiscible polymer blend under electric fields.
    Aida K; Na YH; Nagaya T; Orihara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041807. PubMed ID: 19905333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional observation of an immiscible polymer blend subjected to a step electric field under shear flow.
    Orihara H; Nishimoto Y; Aida K; Na YH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026302. PubMed ID: 21405901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology and rheology of an immiscible polymer blend subjected to a step electric field under shear flow.
    Orihara H; Nishimoto Y; Aida K; Na YH; Nagaya T; Ujiie S
    J Phys Condens Matter; 2011 Jul; 23(28):284106. PubMed ID: 21709333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet coalescence process under electric fields in an immiscible polymer blend.
    Aida K; Na YH; Nagaya T; Orihara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031805. PubMed ID: 21230099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of shear stress to ac electric fields under steady shear flow in a droplet-dispersed phase.
    Na YH; Aida K; Sakai R; Kakuchi T; Orihara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061803. PubMed ID: 20365183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear modulus of structured electrorheological fluid mixtures.
    Shitara K; Sakaue T
    Phys Rev E; 2016 May; 93(5):052603. PubMed ID: 27300947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic deformation of microsize droplets in a microchannel induced by a transverse alternating electric field.
    Mochizuki T
    Langmuir; 2013 Oct; 29(41):12879-90. PubMed ID: 24090269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell dynamics simulations of shear-induced alignment and defect annihilation in stripe patterns formed by block copolymers.
    Ren SR; Hamley IW; Teixeira PI; Olmsted PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041503. PubMed ID: 11308844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of shear flow on the linear response of a nematic liquid crystal to external electric fields.
    Orihara H; Yang F; Takigami Y; Takikawa Y; Na YH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041701. PubMed ID: 23214597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of an electric field on the non-Newtonian response of a hybrid-aligned nematic cell under shear flow.
    Guillén AD; Mendoza CI
    J Chem Phys; 2007 May; 126(20):204905. PubMed ID: 17552798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the Molecular Structure Change of a Matrix Polymer (Nylon 6) on the Deformation of Dispersed Phase (a Thermotropic Liquid Crystalline Polymer) Droplets in Shear Flow.
    Cho S; Seo YP; Seo Y
    ACS Omega; 2022 Feb; 7(4):3341-3347. PubMed ID: 35128244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural explanation of the rheology of a colloidal suspension under high dc electric fields.
    Espín MJ; Delgado AV; González-Caballero F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041503. PubMed ID: 16711805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrorheological fluid under elongation, compression, and shearing.
    Tian Y; Meng Y; Mao H; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031507. PubMed ID: 11909066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparent viscosity of p-methoxybenzylidene-p'-n-butylaniline in the presence of electrohydrodynamic convection.
    Nagaya T; Niu M; Nara S; Na YH; Orihara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012501. PubMed ID: 23410343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear banding in thixotropic and normal emulsions.
    Paredes J; Shahidzadeh-Bonn N; Bonn D
    J Phys Condens Matter; 2011 Jul; 23(28):284116. PubMed ID: 21709327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric-field-induced flow-aligning state in a nematic liquid crystal.
    Fatriansyah JF; Orihara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042508. PubMed ID: 25974517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase separation of a polymer blend driven by oscillating particles.
    Zhu YJ; Ma YQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 1):041503. PubMed ID: 12786366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.