These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18517701)

  • 1. Mapping giant magnetic fields around dense solid plasmas by high-resolution magneto-optical microscopy.
    Sinha J; Mohan S; Banerjee SS; Kahaly S; Kumar GR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046118. PubMed ID: 18517701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions.
    Chatterjee G; Singh PK; Adak A; Lad AD; Kumar GR
    Rev Sci Instrum; 2014 Jan; 85(1):013505. PubMed ID: 24517763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-generated ultrashort multimegagauss magnetic pulses in plasmas.
    Sandhu AS; Dharmadhikari AK; Rajeev PP; Kumar GR; Sengupta S; Das A; Kaw PK
    Phys Rev Lett; 2002 Nov; 89(22):225002. PubMed ID: 12485075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision mapping of laser-driven magnetic fields and their evolution in high-energy-density plasmas.
    Gao L; Nilson PM; Igumenshchev IV; Haines MG; Froula DH; Betti R; Meyerhofer DD
    Phys Rev Lett; 2015 May; 114(21):215003. PubMed ID: 26066442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High speed magneto-optical imaging system to investigate motion characteristics of arc plasma in enclosed chamber.
    Zhang G; Zhang Z; Xu Y; Wang J
    Opt Express; 2018 Sep; 26(18):23156-23166. PubMed ID: 30184970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lorentz mapping of magnetic fields in hot dense plasmas.
    Petrasso RD; Li CK; Seguin FH; Rygg JR; Frenje JA; Betti R; Knauer JP; Meyerhofer DD; Amendt PA; Froula DH; Landen OL; Patel PK; Ross JS; Town RP
    Phys Rev Lett; 2009 Aug; 103(8):085001. PubMed ID: 19792731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas.
    Wagner U; Tatarakis M; Gopal A; Beg FN; Clark EL; Dangor AE; Evans RG; Haines MG; Mangles SP; Norreys PA; Wei MS; Zepf M; Krushelnick K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026401. PubMed ID: 15447595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topology of megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction.
    Lancia L; Albertazzi B; Boniface C; Grisollet A; Riquier R; Chaland F; Le Thanh KC; Mellor P; Antici P; Buffechoux S; Chen SN; Doria D; Nakatsutsumi M; Peth C; Swantusch M; Stardubtsev M; Palumbo L; Borghesi M; Willi O; Pépin H; Fuchs J
    Phys Rev Lett; 2014 Dec; 113(23):235001. PubMed ID: 25526131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collisional absorption of dense plasmas in strong laser fields: quantum statistical results and simulation.
    Hilse P; Schlanges M; Bornath T; Kremp D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056408. PubMed ID: 16089661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas.
    Mondal S; Narayanan V; Ding WJ; Lad AD; Hao B; Ahmad S; Wang WM; Sheng ZM; Sengupta S; Kaw P; Das A; Kumar GR
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8011-5. PubMed ID: 22566660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Field Generation in Plasma Waves Driven by Copropagating Intense Twisted Lasers.
    Shi Y; Vieira J; Trines RMGM; Bingham R; Shen BF; Kingham RJ
    Phys Rev Lett; 2018 Oct; 121(14):145002. PubMed ID: 30339446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field modulation of intense surface plasmon polaritons.
    Clavero C; Yang K; Skuza JR; Lukaszew RA
    Opt Express; 2010 Apr; 18(8):7743-52. PubMed ID: 20588615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetometry based on the effect of laser-induced plasmas in a sodium-containing environment.
    Ding N; Kang GG; Zhang XX; Guo YX; Guo ZY; Zhao L; Jin WQ; Zheng HQ; Ren QY; Zhao H
    Opt Lett; 2022 Sep; 47(18):4608-4611. PubMed ID: 36107044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of protons accelerated by an intense laser and the dependence of their energy on the plasma density.
    Nakamura T; Kawata S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026403. PubMed ID: 12636818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional analysis of microwave generated plasmas with extended planar laser-induced fluorescence.
    Stopper U; Lindner P; Schumacher U
    Rev Sci Instrum; 2007 Apr; 78(4):043508. PubMed ID: 17477661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous polarization transformation and amplification of multi-petawatt laser pulses in magnetized plasmas.
    Zheng X; Weng S; Zhang Z; Ma H; Chen M; McKenna P; Sheng Z
    Opt Express; 2019 Jul; 27(14):19319-19330. PubMed ID: 31503693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of self-generated magnetic fields in laser produced plasmas using a three-channel polaro-interferometer.
    Prasad YB; Barnwal S; Bolkhovitinov EA; Naik PA; Kamath MP; Joshi AS; Kumbhare SR; Rupasov AA; Gupta PD
    Rev Sci Instrum; 2011 Dec; 82(12):123506. PubMed ID: 22225217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography.
    Li CK; Séguin FH; Frenje JA; Rygg JR; Petrasso RD; Town RP; Amendt PA; Hatchett SP; Landen OL; Mackinnon AJ; Patel PK; Smalyuk VA; Sangster TC; Knauer JP
    Phys Rev Lett; 2006 Sep; 97(13):135003. PubMed ID: 17026041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. II. Electron dynamics and outer ionization of the nanoplasma.
    Last I; Jortner J
    J Chem Phys; 2004 Jan; 120(3):1348-60. PubMed ID: 15268260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning magnetic microscope system utilizing a magneto-impedance sensor for a nondestructive diagnostic tool of geological samples.
    Uehara M; Nakamura N
    Rev Sci Instrum; 2007 Apr; 78(4):043708. PubMed ID: 17477671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.