These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18517706)

  • 1. From quasiperiodicity to toroidal chaos: analogy between the Curry-Yorke map and the van der Pol system.
    Letellier C; Messager V; Gilmore R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046203. PubMed ID: 18517706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems.
    Mugnaine M; Batista AM; Caldas IL; Szezech JD; de Carvalho RE; Viana RL
    Chaos; 2021 Feb; 31(2):023125. PubMed ID: 33653060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ring generator of two- and three-frequency quasiperiodic self-oscillations based on the van der Pol oscillator.
    Astakhov SV; Astakhov OV; Fadeeva NS; Astakhov VV
    Chaos; 2021 Aug; 31(8):083108. PubMed ID: 34470230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor.
    Mangiarotti S; Letellier C
    Chaos; 2021 Jan; 31(1):013129. PubMed ID: 33754770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smooth and nonsmooth dependence of Lyapunov vectors upon the angle variable on a torus in the context of torus-doubling transitions in the quasiperiodically forced Hénon map.
    Jalnine AY; Osbaldestin AH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016206. PubMed ID: 15697697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-branched resonances, chaos through quasiperiodicity, and asymmetric states in a superconducting dimer.
    Shena J; Lazarides N; Hizanidis J
    Chaos; 2020 Dec; 30(12):123127. PubMed ID: 33380026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peeling bifurcations of toroidal chaotic attractors.
    Letellier C; Gilmore R; Jones T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066204. PubMed ID: 18233901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of temporal self-organized behaviors in a biochemical system.
    De la Fuente IM
    Biosystems; 1999 May; 50(2):83-97. PubMed ID: 10367973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interruption of torus doubling bifurcation and genesis of strange nonchaotic attractors in a quasiperiodically forced map: mechanisms and their characterizations.
    Venkatesan A; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026219. PubMed ID: 11308570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasiperiodicity and transition to chaos.
    Yang J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6521-6. PubMed ID: 11088332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of noise on the dynamics at the torus-doubling terminal point in a quadratic map under quasiperiodic driving.
    Kuznetsov SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026205. PubMed ID: 16196682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram.
    Dafilis MP; Frascoli F; Cadusch PJ; Liley DT
    Chaos; 2013 Jun; 23(2):023111. PubMed ID: 23822476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arnold's cat map dynamics in a system of coupled nonautonomous van der Pol oscillators.
    Isaeva OB; Jalnine AY; Kuznetsov SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046207. PubMed ID: 17155153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation.
    Zhusubaliyev ZT; Mosekilde E; Maity S; Mohanan S; Banerjee S
    Chaos; 2006 Jun; 16(2):023122. PubMed ID: 16822025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laminar chaos in systems with quasiperiodic delay.
    Müller-Bender D; Radons G
    Phys Rev E; 2023 Jan; 107(1-1):014205. PubMed ID: 36797923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-based analysis of frequency entrainment described by van der Pol and phase-locked loop equations.
    Susuki Y; Yokoi Y; Hikihara T
    Chaos; 2007 Jun; 17(2):023108. PubMed ID: 17614662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of quasiperiodicity in quorum-sensing coupled identical repressilators.
    Stankevich N; Volkov E
    Chaos; 2020 Apr; 30(4):043122. PubMed ID: 32357660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of asymmetrical and repulsive coupling in the dynamics of two coupled van der Pol oscillators.
    Astakhov S; Gulai A; Fujiwara N; Kurths J
    Chaos; 2016 Feb; 26(2):023102. PubMed ID: 26931583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaos in the peroxidase-oxidase oscillator.
    Olsen LF; Lunding A
    Chaos; 2021 Jan; 31(1):013119. PubMed ID: 33754781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universality in the quasiperiodic route to chaos.
    Dixon TW; Gherghetta T; Kenny BG
    Chaos; 1996 Mar; 6(1):32-42. PubMed ID: 12780233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.