These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18517836)

  • 1. Surviving structure in colloidal suspensions squeezed from 3D to 2D.
    Klapp SH; Zeng Y; Qu D; von Klitzing R
    Phys Rev Lett; 2008 Mar; 100(11):118303. PubMed ID: 18517836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of confinement on the electrostatic interaction between charged colloids: a (N,V,T) Monte Carlo study within hyperspherical geometry.
    Delville A
    J Phys Chem B; 2005 Apr; 109(16):8164-70. PubMed ID: 16851954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-consistent renormalized jellium approach for calculating structural and thermodynamic properties of charge stabilized colloidal suspensions.
    Colla TE; Levin Y; Trizac E
    J Chem Phys; 2009 Aug; 131(7):074115. PubMed ID: 19708740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-wavelength transverse modes in charged colloidal crystals.
    Tata BV; Mohanty PS; Valsakumar MC; Yamanaka J
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):268303. PubMed ID: 15698034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range interactions between soft colloidal particles in slit-pore geometries.
    Klapp SH; Qu D; Klitzing RV
    J Phys Chem B; 2007 Feb; 111(6):1296-303. PubMed ID: 17249719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening effects on structure and diffusion in confined charged colloids.
    Kittner M; Klapp SH
    J Chem Phys; 2007 Apr; 126(15):154902. PubMed ID: 17461662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal crystallization and structural changes in suspensions of silica/magnetite core-shell nanoparticles.
    Malik V; Petukhov AV; He L; Yin Y; Schmidt M
    Langmuir; 2012 Oct; 28(41):14777-83. PubMed ID: 22794064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gravitational compression dynamics of charged colloidal crystals.
    Murai M; Okuzono T; Yamamoto M; Toyotama A; Yamanaka J
    J Colloid Interface Sci; 2012 Mar; 370(1):39-45. PubMed ID: 22284572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping patterned potential energy landscapes with diffusing colloidal probes.
    Wu HJ; Everett WN; Anekal SG; Bevan MA
    Langmuir; 2006 Aug; 22(16):6826-36. PubMed ID: 16863227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of surface charges on the solvation forces in confined colloidal solutions.
    Grandner S; Zeng Y; v Klitzing R; Klapp SH
    J Chem Phys; 2009 Oct; 131(15):154702. PubMed ID: 20568875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase behavior of colloids and proteins in aqueous suspensions: theory and computer simulations.
    Valadez-Pérez NE; Benavides AL; Schöll-Paschinger E; Castañeda-Priego R
    J Chem Phys; 2012 Aug; 137(8):084905. PubMed ID: 22938263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical study of the silica particle interactions in the presence of multivalent rod-like ions.
    Reščič J; Kovačević D; Tomšič M; Jamnik A; Ahualli S; Bohinc K
    Langmuir; 2014 Aug; 30(32):9717-25. PubMed ID: 25036697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions.
    Xu B; Gilchrist JF
    J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal model of lysozyme aqueous solutions: a computer simulation and theoretical study.
    Pellicane G
    J Phys Chem B; 2012 Feb; 116(7):2114-20. PubMed ID: 22277046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oppositely charged model ceramic colloids: numerical predictions and experimental observations by confocal laser scanning microscopy.
    Piechowiak MA; Videcoq A; Rossignol F; Pagnoux C; Carrion C; Cerbelaud M; Ferrando R
    Langmuir; 2010 Aug; 26(15):12540-7. PubMed ID: 20604541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion specificity and the theory of stability of colloidal suspensions.
    dos Santos AP; Levin Y
    Phys Rev Lett; 2011 Apr; 106(16):167801. PubMed ID: 21599413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of charged nanoparticles on colloidal forces: a molecular simulation study.
    Fazelabdolabadi B; Walz JY; Van Tassel PR
    J Phys Chem B; 2009 Oct; 113(42):13860-5. PubMed ID: 19548652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layering in sedimentation of suspensions of charged colloids: simulation and theory.
    Cuetos A; Hynninen AP; Zwanikken J; van Roij R; Dijkstra M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061402. PubMed ID: 16906822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smoluchowski equation and the colloidal charge reversal.
    Diehl A; Levin Y
    J Chem Phys; 2006 Aug; 125(5):054902. PubMed ID: 16942253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The giant electrorheological effect in suspensions of nanoparticles.
    Wen W; Huang X; Yang S; Lu K; Sheng P
    Nat Mater; 2003 Nov; 2(11):727-30. PubMed ID: 14528296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.