These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18517908)

  • 1. Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes.
    Oron-Carl M; Krupke R
    Phys Rev Lett; 2008 Mar; 100(12):127401. PubMed ID: 18517908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes.
    Song D; Wang F; Dukovic G; Zheng M; Semke ED; Brus LE; Heinz TF
    Phys Rev Lett; 2008 Jun; 100(22):225503. PubMed ID: 18643430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tip-enhanced THz Raman spectroscopy for local temperature determination at the nanoscale.
    Balois MV; Hayazawa N; Catalan FC; Kawata S; Yano TA; Hayashi T
    Anal Bioanal Chem; 2015 Nov; 407(27):8205-13. PubMed ID: 26164304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.
    Jiang T; Hong H; Liu C; Liu WT; Liu K; Wu S
    Nano Lett; 2018 Apr; 18(4):2590-2594. PubMed ID: 29543467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes.
    Kneipp K; Kneipp H; Corio P; Brown SD; Shafer K; Motz J; Perelman LT; Hanlon EB; Marucci A; Dresselhaus G; Dresselhaus MS
    Phys Rev Lett; 2000 Apr; 84(15):3470-3. PubMed ID: 11019117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of exciton-phonon coupling elements in single-walled carbon nanotubes by Raman overtone analysis.
    Shreve AP; Haroz EH; Bachilo SM; Weisman RB; Tretiak S; Kilina S; Doorn SK
    Phys Rev Lett; 2007 Jan; 98(3):037405. PubMed ID: 17358727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent phonon dynamics in single-walled carbon nanotubes studied by time-frequency two-dimensional coherent anti-stokes Raman scattering spectroscopy.
    Ikeda K; Uosaki K
    Nano Lett; 2009 Apr; 9(4):1378-81. PubMed ID: 19278210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the electron-phonon coupling of individual single-walled carbon nanotubes.
    Oron-Carl M; Hennrich F; Kappes MM; Löhneysen HV; Krupke R
    Nano Lett; 2005 Sep; 5(9):1761-7. PubMed ID: 16159220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate-induced Raman frequency variation for single-walled carbon nanotubes.
    Zhang Y; Zhang J; Son H; Kong J; Liu Z
    J Am Chem Soc; 2005 Dec; 127(49):17156-7. PubMed ID: 16332042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes.
    Cronin SB; Swan AK; Unlü MS; Goldberg BB; Dresselhaus MS; Tinkham M
    Phys Rev Lett; 2004 Oct; 93(16):167401. PubMed ID: 15525030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects.
    Fantini C; Jorio A; Souza M; Strano MS; Dresselhaus MS; Pimenta MA
    Phys Rev Lett; 2004 Oct; 93(14):147406. PubMed ID: 15524844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anharmonic phonon lifetimes in carbon nanotubes: evidence for a one-dimensional phonon decay bottleneck.
    Rao R; Menendez J; Poweleit CD; Rao AM
    Phys Rev Lett; 2007 Jul; 99(4):047403. PubMed ID: 17678403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal optical phonons in metallic and semiconducting carbon nanotubes.
    Fouquet M; Telg H; Maultzsch J; Wu Y; Chandra B; Hone J; Heinz TF; Thomsen C
    Phys Rev Lett; 2009 Feb; 102(7):075501. PubMed ID: 19257684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical generation and absorption of phonons in carbon nanotubes.
    Leroy BJ; Lemay SG; Kong J; Dekker C
    Nature; 2004 Nov; 432(7015):371-4. PubMed ID: 15549099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes.
    Spencer JH; Nesbitt JM; Trewhitt H; Kashtiban RJ; Bell G; Ivanov VG; Faulques E; Sloan J; Smith DC
    ACS Nano; 2014 Sep; 8(9):9044-52. PubMed ID: 25163005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical cooling of single-walled carbon nanotubes as revealed by their anti-Stokes Raman spectra.
    Baltog I; Baibarac M; Lefrant S
    J Phys Condens Matter; 2008 Jul; 20(27):275215. PubMed ID: 21694376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of the population lifetime of D band and G' band phonons in single-walled carbon nanotubes.
    Nesbitt JM; Smith DC
    Nano Lett; 2013 Feb; 13(2):416-22. PubMed ID: 23297761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of covalent defects on phonon softening in metallic carbon nanotubes.
    Nguyen KT; Shim M
    J Am Chem Soc; 2009 May; 131(20):7103-6. PubMed ID: 19415892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron and optical phonon temperatures in electrically biased graphene.
    Berciaud S; Han MY; Mak KF; Brus LE; Kim P; Heinz TF
    Phys Rev Lett; 2010 Jun; 104(22):227401. PubMed ID: 20867202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.