These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18517908)

  • 21. Optical phonon lifetimes in single-walled carbon nanotubes by time-resolved Raman scattering.
    Kang K; Ozel T; Cahill DG; Shimt M
    Nano Lett; 2008 Dec; 8(12):4642-7. PubMed ID: 19367808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lattice dynamics of carbon chain inside a carbon nanotube.
    Guo ZX; Ding JW; Xiao Y; Mao YL
    J Phys Chem B; 2006 Nov; 110(43):21803-7. PubMed ID: 17064143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control the Raman response of individual carbon nanotubes by orbital angular momentum of light.
    Xiao F; Liu C; Liu K; Shang W; Zhu W; Zhao J
    Opt Lett; 2017 Jul; 42(13):2491-2494. PubMed ID: 28957266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raman spectroscopy of strained single-walled carbon nanotubes.
    Liu Z; Zhang J; Gao B
    Chem Commun (Camb); 2009 Dec; (45):6902-18. PubMed ID: 19904346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonon softening in individual metallic carbon nanotubes due to the Kohn Anomaly.
    Farhat H; Son H; Samsonidze GG; Reich S; Dresselhaus MS; Kong J
    Phys Rev Lett; 2007 Oct; 99(14):145506. PubMed ID: 17930687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Doping and phonon renormalization in carbon nanotubes.
    Tsang JC; Freitag M; Perebeinos V; Liu J; Avouris P
    Nat Nanotechnol; 2007 Nov; 2(11):725-30. PubMed ID: 18654413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GaN-based two-dimensional channels: hot-electron fluctuations and dissipation.
    Matulionis A
    J Phys Condens Matter; 2009 Apr; 21(17):174203. PubMed ID: 21825407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chirality-selective excitation of coherent phonons in carbon nanotubes by femtosecond optical pulses.
    Kim JH; Han KJ; Kim NJ; Yee KJ; Lim YS; Sanders GD; Stanton CJ; Booshehri LG; Hároz EH; Kono J
    Phys Rev Lett; 2009 Jan; 102(3):037402. PubMed ID: 19257393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature dependence of the optical transition energies of carbon nanotubes: the role of electron-phonon coupling and thermal expansion.
    Cronin SB; Yin Y; Walsh A; Capaz RB; Stolyarov A; Tangney P; Cohen ML; Louie SG; Swan AK; Unlü MS; Goldberg BB; Tinkham M
    Phys Rev Lett; 2006 Mar; 96(12):127403. PubMed ID: 16605957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal emission spectra from individual suspended carbon nanotubes.
    Liu Z; Bushmaker A; Aykol M; Cronin SB
    ACS Nano; 2011 Jun; 5(6):4634-40. PubMed ID: 21545117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Low-temperature-dependent characteristics of Raman scattering in N-type 4H-SiC].
    Miao RX; Zhao P; Liu WH; Tang XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jan; 34(1):108-10. PubMed ID: 24783543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes.
    López-Lorente AI; Simonet BM; Valcárcel M; Mizaikoff B
    Anal Chim Acta; 2013 Jul; 788():122-8. PubMed ID: 23845490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single mode phonon energy transmission in functionalized carbon nanotubes.
    Lee J; Varshney V; Roy AK; Farmer BL
    J Chem Phys; 2011 Sep; 135(10):104109. PubMed ID: 21932878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonant coherent phonon generation in single-walled carbon nanotubes through near-band-edge excitation.
    Lim YS; Ahn JG; Kim JH; Yee KJ; Joo T; Baik SH; Hároz EH; Booshehri LG; Kono J
    ACS Nano; 2010 Jun; 4(6):3222-6. PubMed ID: 20469843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes.
    Mann D; Pop E; Cao J; Wang Q; Goodson K; Dai H
    J Phys Chem B; 2006 Feb; 110(4):1502-5. PubMed ID: 16471703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature dependence of the Raman spectra of individual carbon nanotubes.
    Zhou Z; Dou X; Ci L; Song L; Liu D; Gao Y; Wang J; Liu L; Zhou W; Xie S; Wan D
    J Phys Chem B; 2006 Jan; 110(3):1206-9. PubMed ID: 16471665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy.
    Hirschmann TCh; Araujo PT; Muramatsu H; Zhang X; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2013 Mar; 7(3):2381-7. PubMed ID: 23311296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stokes and anti-Stokes Raman scattering in mono- and bilayer graphene.
    Cong X; Wu JB; Lin ML; Liu XL; Shi W; Venezuela P; Tan PH
    Nanoscale; 2018 Aug; 10(34):16138-16144. PubMed ID: 30117506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cavity Engineering of Photon-Phonon Interactions in Si Nanocavities.
    Agarwal D; Yoo J; Pan A; Agarwal R
    Nano Lett; 2019 Nov; 19(11):7950-7956. PubMed ID: 31658421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
    Sahoo S; Chitturi VR; Agarwal R; Jiang JW; Katiyar RS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19958-65. PubMed ID: 25350877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.