BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18518051)

  • 21. 'Reverse' Hofmeister effects on the sol-gel transition rates for an α-helical peptide-PEG bioconjugate.
    O'Neill SC; Kanthe AD; Weber JA; Tu RS
    Phys Chem Chem Phys; 2018 Aug; 20(30):20287-20295. PubMed ID: 30039819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic viscoelasticity and concentration dependence of micelle-gel transition of styrene and N-tert-butylacrylamide diblock copolymer solutions.
    Sharma N; Kasi RM
    Langmuir; 2010 May; 26(10):7418-24. PubMed ID: 20387873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation.
    Moschakis T; Lazaridou A; Biliaderis CG
    J Colloid Interface Sci; 2012 Jun; 375(1):50-9. PubMed ID: 22436725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Competition among physical, chemical, and hybrid gelation mechanisms in biopolymers.
    López-Santiago RF; Delgado J; Castillo R
    Soft Matter; 2024 Mar; 20(11):2518-2531. PubMed ID: 38404139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aging in dense suspensions of soft thermosensitive microgel particles studied with particle-tracking microrheology.
    van den Ende D; Purnomo EH; Duits MH; Richtering W; Mugele F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011404. PubMed ID: 20365370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soft glass rheology in liquid crystalline gels formed by a monodisperse dipeptide.
    Nair GG; Krishna Prasad S; Bhargavi R; Jayalakshmi V; Shanker G; Yelamaggad CV
    J Phys Chem B; 2010 Jan; 114(2):697-704. PubMed ID: 20028007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-bandwidth viscoelastic properties of aging colloidal glasses and gels.
    Jabbari-Farouji S; Atakhorrami M; Mizuno D; Eiser E; Wegdam GH; Mackintosh FC; Bonn D; Schmidt CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061402. PubMed ID: 19256836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphical analysis for gel morphology. III. Gel size and temperature effects on the volume phase transition of gels.
    Hashimoto C; Ushiki H
    J Chem Phys; 2006 Jan; 124(4):044903. PubMed ID: 16460208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-brownian microrheology of a fluid-gel interface.
    Hobbie EK; Lin-Gibson S; Kumar S
    Phys Rev Lett; 2008 Feb; 100(7):076001. PubMed ID: 18352570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic viscoelastic properties of collagen gels with high mechanical strength.
    Mori H; Shimizu K; Hara M
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3230-6. PubMed ID: 23706205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural changes during heat-induced gelation of globular protein dispersions.
    Ikeda S; Nishinari K
    Biopolymers; 2001 Aug; 59(2):87-102. PubMed ID: 11373722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Particle-tracking microrheology of living cells: principles and applications.
    Wirtz D
    Annu Rev Biophys; 2009; 38():301-26. PubMed ID: 19416071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Particle tracking microrheology of gel-forming amyloid fibril networks.
    Corrigan AM; Donald AM
    Eur Phys J E Soft Matter; 2009 Apr; 28(4):457-62. PubMed ID: 19333633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Routes to gelation in a clay suspension.
    Ruzicka B; Zulian L; Ruocco G
    Phys Rev Lett; 2004 Dec; 93(25):258301. PubMed ID: 15697952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells.
    Mahaffy RE; Shih CK; MacKintosh FC; Käs J
    Phys Rev Lett; 2000 Jul; 85(4):880-3. PubMed ID: 10991422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleation and growth of thermoreversible polymer gels.
    Gomez-Solano JR; Blickle V; Bechinger C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012308. PubMed ID: 23410332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scaling analysis of polyacrylamide gel surfaces synthesized in the presence of surfactants.
    Chakrapani M; Mitchell SJ; Van Winkle DH; Rikvold PA
    J Colloid Interface Sci; 2003 Feb; 258(1):186-97. PubMed ID: 12600787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymer-bridged gels of nanoparticles in solutions of adsorbing polymers.
    Surve M; Pryamitsyn V; Ganesan V
    J Chem Phys; 2006 Aug; 125(6):64903. PubMed ID: 16942308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase Behavior and Structural Changes in Tetraethylorthosilicate-Derived Gels in the Presence of Polyethylene Glycol, Studied by Rheological Techniques and Visual Observations.
    Ågren P; Rosenholm JB
    J Colloid Interface Sci; 1998 Aug; 204(1):45-52. PubMed ID: 9665765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibrillar beta-lactoglobulin gels: Part 2. Dynamic mechanical characterization of heat-set systems.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2420-9. PubMed ID: 15530059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.