These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18518051)

  • 41. Symmetry breakdown in the sol-gel transition of a Guar gum transient physical network.
    Zammali M; Liu S; Yu W
    Carbohydr Polym; 2021 Apr; 258():117689. PubMed ID: 33593562
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fibrillar beta-lactoglobulin gels: Part 2. Dynamic mechanical characterization of heat-set systems.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2420-9. PubMed ID: 15530059
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tuning viscoelastic properties of supramolecular peptide gels via dynamic covalent crosslinking.
    Khalily MA; Goktas M; Guler MO
    Org Biomol Chem; 2015 Feb; 13(7):1983-7. PubMed ID: 25566850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Static and dynamic heterogeneities in a model for irreversible gelation.
    Abete T; de Candia A; Del Gado E; Fierro A; Coniglio A
    Phys Rev Lett; 2007 Feb; 98(8):088301. PubMed ID: 17359133
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Counterion-dependent microrheological properties of F-actin solutions across the isotropic-nematic phase transition.
    He J; Mak M; Liu Y; Tang JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011908. PubMed ID: 18763983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physical properties of acid milk gels prepared at 37 degrees C up to gelation but at different incubation temperatures for the remainder of fermentation.
    Peng Y; Horne DS; Lucey JA
    J Dairy Sci; 2010 May; 93(5):1910-7. PubMed ID: 20412904
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contrasting roles of layered structures in the molecular assembly of liquid crystal matrices on the viscoelastic properties of microparticle/liquid crystal composite gels leading to rigidification and destabilization.
    Yamamoto T; Kawata Y; Yoshida M
    J Colloid Interface Sci; 2013 May; 397():131-6. PubMed ID: 23465188
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic study of silica gels by a new rheological ultrasonic investigation.
    Ould Ehssein C; Serfaty S; Griesmar P; Le Huerou JY; Martinez L; Caplain E; Wilkie-Chancellier N; Gindre M; Gouedard G; Figuiere P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e881-5. PubMed ID: 16797663
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of solvent hydrophobicity on gelation kinetics and phase diagram of gelatin ionogels.
    Rawat K; Pathak J; Bohidar HB
    Soft Matter; 2014 Feb; 10(6):862-72. PubMed ID: 24836988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solvent-induced lysozyme gels: rheology, fractal analysis, and sol-gel kinetics.
    da Silva MA; Arêas EP
    J Colloid Interface Sci; 2005 Sep; 289(2):394-401. PubMed ID: 15935361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combining self-assembling peptide gels with three-dimensional elastomer scaffolds.
    Vallés-Lluch A; Arnal-Pastor M; Martínez-Ramos C; Vilariño-Feltrer G; Vikingsson L; Castells-Sala C; Semino CE; Monleón Pradas M
    Acta Biomater; 2013 Dec; 9(12):9451-60. PubMed ID: 23933101
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temperature-dependent gelation process in colloidal dispersions by diffusing wave spectroscopy.
    Liu J; Boyko V; Yi Z; Men Y
    Langmuir; 2013 Nov; 29(46):14044-9. PubMed ID: 24188162
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of the scaling law on gelation of oppositely charged nanocrystalline cellulose and polyelectrolyte.
    Lu A; Wang Y; Boluk Y
    Carbohydr Polym; 2014 May; 105():214-21. PubMed ID: 24708972
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Percolation model for enzyme gel degradation.
    Abete T; de Candia A; Lairez D; Coniglio A
    Phys Rev Lett; 2004 Nov; 93(22):228301. PubMed ID: 15601123
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation of the scaling law on cellulose solution prepared at low temperature.
    Lue A; Zhang L
    J Phys Chem B; 2008 Apr; 112(15):4488-95. PubMed ID: 18366208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Near-surface microrheology reveals dynamics and viscoelasticity of soft matter.
    Liu W; Gong X; Ngai T; Wu C
    Soft Matter; 2018 Dec; 14(48):9764-9776. PubMed ID: 30383062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photochemical control of network structure in gels and photo-induced changes in their viscoelastic properties.
    Hosono N; Furukawa H; Masubuchi Y; Watanabe T; Horie K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):285-9. PubMed ID: 17344037
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiple particle tracking microrheology measured using bi-disperse probe diameters.
    Wehrman MD; Lindberg S; Schultz KM
    Soft Matter; 2018 Jul; 14(28):5811-5820. PubMed ID: 29974108
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Viscoelasticity of randomly branched polymers in the vulcanization class.
    Lusignan CP; Mourey TH; Wilson JC; Colby RH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5657-69. PubMed ID: 11970459
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic structure of thermoreversible colloidal gels of adhesive spheres.
    Solomon MJ; Varadan P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051402. PubMed ID: 11414901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.