These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18518113)

  • 1. Similarity between the primary and secondary air-assisted liquid jet breakup mechanisms.
    Wang Y; Im KS; Fezzaa K
    Phys Rev Lett; 2008 Apr; 100(15):154502. PubMed ID: 18518113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity.
    Umemura A; Kawanabe S; Suzuki S; Osaka J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036309. PubMed ID: 22060494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior and dynamics of bubble breakup in gas pipeline leaks and accidental subsea oil well blowouts.
    Wang B; Socolofsky SA; Lai CCK; Adams EE; Boufadel MC
    Mar Pollut Bull; 2018 Jun; 131(Pt A):72-86. PubMed ID: 29886999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifractality of drop breakup in the air-blast nozzle atomization process.
    Zhou WX; Yu ZH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016302. PubMed ID: 11304348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound-modulated twin-fluid atomization of a liquid jet.
    Tsai SC; Luu P; Childs P; Tsai CS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):139-46. PubMed ID: 18238407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of water electrosprays in the simple-jet mode.
    Agostinho LL; Tamminga G; Yurteri CU; Brouwer SP; Fuchs EC; Marijnissen JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066317. PubMed ID: 23368048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The acquisition and measurement of surface waves of high-speed liquid jets.
    Gong C; Yang M; Kang C; Wang Y
    J Vis (Tokyo); 2016; 19():211-224. PubMed ID: 27110212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle.
    Umemura A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046307. PubMed ID: 21599295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catastrophic drop breakup in electric field.
    Raut JS; Akella S; Singh A; Naik VM
    Langmuir; 2009 May; 25(9):4829-34. PubMed ID: 19334721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakup morphology of expelled respiratory liquid: From the perspective of hydrodynamic instabilities.
    Vadivukkarasan M; Dhivyaraja K; Panchagnula MV
    Phys Fluids (1994); 2020 Sep; 32(9):094101. PubMed ID: 32952382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear instability analysis of a shear thinning gelled jet with yield stress in coaxial atomization.
    Wang Y; Chai P; Yao F; Chen H; Shi Z; Zhao H; Li W; Liu H
    Soft Matter; 2023 Aug; 19(30):5781-5794. PubMed ID: 37469310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomization characteristics and instabilities in the combustion of multi-component fuel droplets with high volatility differential.
    Rao DCK; Karmakar S; Basu S
    Sci Rep; 2017 Aug; 7(1):8925. PubMed ID: 28827703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Evolution and Breakup of the Cavitating Liquid Jet Surrounded by the Rotary Compressible Air.
    Liu SX; Lü M
    ACS Omega; 2019 Dec; 4(26):21732-21740. PubMed ID: 31891052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Short Note about the Impact Action of a Water Jet Stabilized by a Coaxial Air Stream in the Air and Underwater.
    Poláček J; Hlaváčová IM; Tyč M
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulence in pneumatic flow focusing and flow blurring regimes.
    Rosell-Llompart J; Gañán-Calvo AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036321. PubMed ID: 18517525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakup of a supported drop of a viscous conducting liquid in a uniform electric field.
    Higuera FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016314. PubMed ID: 18764057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Nonionic Surfactant on the Deformation and Breakup of a Drop in an Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1998 Oct; 206(1):195-204. PubMed ID: 9761644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals.
    Porter D; Savage JR; Cohen I; Spicer P; Caggioni M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041701. PubMed ID: 22680486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memoryless drop breakup in turbulence.
    Vela-Martín A; Avila M
    Sci Adv; 2022 Dec; 8(50):eabp9561. PubMed ID: 36525489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.