These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18518247)

  • 1. Energy landscape, antiplasticization, and polydispersity induced crossover of heterogeneity in supercooled polydisperse liquids.
    Abraham SE; Bhattacharrya SM; Bagchi B
    Phys Rev Lett; 2008 Apr; 100(16):167801. PubMed ID: 18518247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of the rate of growth of dynamic heterogeneities and its relation to the local structure in a supercooled polydisperse liquid.
    Abraham SE; Bagchi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051501. PubMed ID: 19113130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2010 Jun; 22(23):232102. PubMed ID: 21393759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glassy arrest in colloidal fluids with size polydispersity.
    Braun FN; Bergenholtz J
    J Phys Chem B; 2007 Oct; 111(40):11626-8. PubMed ID: 17880201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of local structure on motions on the potential energy landscape for a model supercooled polymer.
    Jain TS; de Pablo JJ
    J Chem Phys; 2005 May; 122(17):174515. PubMed ID: 15910053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape.
    Banerjee S; Dasgupta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why glass elasticity affects the thermodynamics and fragility of supercooled liquids.
    Yan L; Düring G; Wyart M
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6307-12. PubMed ID: 23576746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragility and thermodynamics in nonpolymeric glass-forming liquids.
    Wang LM; Angell CA; Richert R
    J Chem Phys; 2006 Aug; 125(7):074505. PubMed ID: 16942349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural evolution in the aging process of supercooled colloidal liquids.
    Kawasaki T; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062315. PubMed ID: 25019784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The physics of the colloidal glass transition.
    Hunter GL; Weeks ER
    Rep Prog Phys; 2012 Jun; 75(6):066501. PubMed ID: 22790649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-field-crystal modeling of glass-forming liquids: spanning time scales during vitrification, aging, and deformation.
    Berry J; Grant M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062303. PubMed ID: 25019772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic thermal expansivity of liquids near the glass transition.
    Niss K; Gundermann D; Christensen T; Dyre JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041501. PubMed ID: 22680477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation and fractionation of order and disorder in highly polydisperse systems.
    Fernández LA; Martín-Mayor V; Seoane B; Verrocchio P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021501. PubMed ID: 20866812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: the potential energy landscape ensemble.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224503. PubMed ID: 18081402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium glassy phase in a polydisperse hard-sphere system.
    Chaudhuri P; Karmakar S; Dasgupta C; Krishnamurthy HR; Sood AK
    Phys Rev Lett; 2005 Dec; 95(24):248301. PubMed ID: 16384428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics and dynamics of a monoatomic glass former. Constant pressure and constant volume behavior.
    Kapko V; Matyushov DV; Angell CA
    J Chem Phys; 2008 Apr; 128(14):144505. PubMed ID: 18412457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of polydisperse inverse ferrofluids: theory and computer simulation.
    Jian YC; Gao Y; Huang JP; Tao R
    J Phys Chem B; 2008 Jan; 112(3):715-21. PubMed ID: 18095666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica through the eyes of colloidal models--when glass is a gel.
    Saika-Voivod I; King HM; Tartaglia P; Sciortino F; Zaccarelli E
    J Phys Condens Matter; 2011 Jul; 23(28):285101. PubMed ID: 21659694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glasslike arrest in spinodal decomposition as a route to colloidal gelation.
    Manley S; Wyss HM; Miyazaki K; Conrad JC; Trappe V; Kaufman LJ; Reichman DR; Weitz DA
    Phys Rev Lett; 2005 Dec; 95(23):238302. PubMed ID: 16384352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.