These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Direct regular-to-chaotic tunneling rates using the fictitious-integrable-system approach. Bäcker A; Ketzmerick R; Löck S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056208. PubMed ID: 21230564 [TBL] [Abstract][Full Text] [Related]
3. Regular-to-chaotic tunneling rates using a fictitious integrable system. Bäcker A; Ketzmerick R; Löck S; Schilling L Phys Rev Lett; 2008 Mar; 100(10):104101. PubMed ID: 18352192 [TBL] [Abstract][Full Text] [Related]
4. Coupling of bouncing-ball modes to the chaotic sea and their counting function. Löck S; Bäcker A; Ketzmerick R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016210. PubMed ID: 22400646 [TBL] [Abstract][Full Text] [Related]
5. Quantum and wave dynamical chaos in superconducting microwave billiards. Dietz B; Richter A Chaos; 2015 Sep; 25(9):097601. PubMed ID: 26428554 [TBL] [Abstract][Full Text] [Related]
10. Leaking billiards. Nagler J; Krieger M; Linke M; Schönke J; Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046204. PubMed ID: 17500975 [TBL] [Abstract][Full Text] [Related]
11. Parametric correlations of the energy levels of ray-splitting billiards. Savytskyy N; Kohler A; Bauch S; Blümel R; Sirko L Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036211. PubMed ID: 11580426 [TBL] [Abstract][Full Text] [Related]
12. Time-reversal-invariant hexagonal billiards with a point symmetry. Lima TA; do Carmo RB; Terto K; de Aguiar FM Phys Rev E; 2021 Dec; 104(6-1):064211. PubMed ID: 35030857 [TBL] [Abstract][Full Text] [Related]
13. Nonperiodic echoes from mushroom billiard hats. Dietz B; Friedrich T; Miski-Oglu M; Richter A; Seligman TH; Zapfe K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056207. PubMed ID: 17279984 [TBL] [Abstract][Full Text] [Related]
14. Crossover from regular to irregular behavior in current flow through open billiards. Berggren KF; Sadreev AF; Starikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472 [TBL] [Abstract][Full Text] [Related]
15. Spectral properties of Bunimovich mushroom billiards. Dietz B; Friedrich T; Miski-Oglu M; Richter A; Schäfer F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):035203. PubMed ID: 17500749 [TBL] [Abstract][Full Text] [Related]
16. The role of dissipation in time-dependent non-integrable focusing billiards. Ryabov AB; Loskutov A Chaos; 2012 Jun; 22(2):026121. PubMed ID: 22757580 [TBL] [Abstract][Full Text] [Related]
17. Distribution of resonance strengths in microwave billiards of mixed and chaotic dynamics. Dembowski C; Dietz B; Friedrich T; Gräf HD; Harney HL; Heine A; Miski-Oglu M; Richter A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046202. PubMed ID: 15903765 [TBL] [Abstract][Full Text] [Related]
19. No-slip billiards with particles of variable mass distribution. Ahmed J; Cox C; Wang B Chaos; 2022 Feb; 32(2):023102. PubMed ID: 35232024 [TBL] [Abstract][Full Text] [Related]
20. Experimental investigations of chaos-assisted tunneling in a microwave annular billiard. Hofferbert R; Alt H; Dembowski C; Gräf HD; Harney HL; Heine A; Rehfeld H; Richter A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046201. PubMed ID: 15903764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]