These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18518396)

  • 1. Band offsets at the Si/SiO2 interface from many-body perturbation theory.
    Shaltaf R; Rignanese GM; Gonze X; Giustino F; Pasquarello A
    Phys Rev Lett; 2008 May; 100(18):186401. PubMed ID: 18518396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical prediction of the band offsets at the ZnO/anatase TiO2 and GaN/ZnO heterojunctions using the self-consistent ab initio DFT/GGA-1/2 method.
    Fang DQ; Zhang SL
    J Chem Phys; 2016 Jan; 144(1):014704. PubMed ID: 26747815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations.
    Alkauskas A; Broqvist P; Devynck F; Pasquarello A
    Phys Rev Lett; 2008 Sep; 101(10):106802. PubMed ID: 18851241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators.
    Grüning M; Marini A; Rubio A
    J Chem Phys; 2006 Apr; 124(15):154108. PubMed ID: 16674219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications.
    Nagoya A; Asahi R; Kresse G
    J Phys Condens Matter; 2011 Oct; 23(40):404203. PubMed ID: 21931185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory.
    Demján T; Vörös M; Palummo M; Gali A
    J Chem Phys; 2014 Aug; 141(6):064308. PubMed ID: 25134572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate band gaps and dielectric properties from one-electron theories (abstract only).
    Kresse G; Shishkin M; Marsman M; Paier J
    J Phys Condens Matter; 2008 Feb; 20(6):064203. PubMed ID: 21693865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the c-Si/a-SiO
    Zheng F; Pham HH; Wang LW
    Phys Chem Chem Phys; 2017 Dec; 19(48):32617-32625. PubMed ID: 29192712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasiparticle band structures and optical properties of magnesium fluoride.
    Yi Z; Jia R
    J Phys Condens Matter; 2012 Feb; 24(8):085602. PubMed ID: 22277330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic excitations of bulk LiCl from many-body perturbation theory.
    Jiang YF; Wang NP; Rohlfing M
    J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.
    Patrick CE; Giustino F
    J Phys Condens Matter; 2012 May; 24(20):202201. PubMed ID: 22510587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-Principles Band Alignments at the Si:Anatase TiO
    Chang Y; Yates JR; Patrick CE
    ACS Omega; 2023 Jun; 8(22):20138-20147. PubMed ID: 37305305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The quasiparticle band structure of zincblende and rocksalt ZnO.
    Dixit H; Saniz R; Lamoen D; Partoens B
    J Phys Condens Matter; 2010 Mar; 22(12):125505. PubMed ID: 21389492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Many-body perturbation theory using the density-functional concept: beyond the GW approximation.
    Bruneval F; Sottile F; Olevano V; Del Sole R; Reining L
    Phys Rev Lett; 2005 May; 94(18):186402. PubMed ID: 15904386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling amorphous silicon with hydrogenated defects: GW treatment of the ST12 phase.
    Fisker C; Trolle ML; Pedersen TG
    J Phys Condens Matter; 2012 Aug; 24(32):325803, 1-6. PubMed ID: 22785043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasiparticle self-consistent GW method for the spectral properties of complex materials.
    Bruneval F; Gatti M
    Top Curr Chem; 2014; 347():99-135. PubMed ID: 24563009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band-gap problem in semiconductors revisited: effects of core states and many-body self-consistency.
    Ku W; Eguiluz AG
    Phys Rev Lett; 2002 Sep; 89(12):126401. PubMed ID: 12225107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasiparticle electronic and optical properties of the Si-Sn system.
    Jensen RV; Pedersen TG; Larsen AN
    J Phys Condens Matter; 2011 Aug; 23(34):345501. PubMed ID: 21841232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation effects of π electrons on the band structures of conjugated polymers using the self-consistent GW approximation with vertex corrections.
    Chang YW; Jin BY
    J Chem Phys; 2012 Jan; 136(2):024110. PubMed ID: 22260567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.