BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 18518404)

  • 1. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range.
    Righini M; Volpe G; Girard C; Petrov D; Quidant R
    Phys Rev Lett; 2008 May; 100(18):186804. PubMed ID: 18518404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties.
    Messina E; Cavallaro E; Cacciola A; Iatì MA; Gucciardi PG; Borghese F; Denti P; Saija R; Compagnini G; Meneghetti M; Amendola V; Maragò OM
    ACS Nano; 2011 Feb; 5(2):905-13. PubMed ID: 21207989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control.
    Ling L; Guo HL; Zhong XL; Huang L; Li JF; Gan L; Li ZY
    Nanotechnology; 2012 Jun; 23(21):215302. PubMed ID: 22551556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On chip shapeable optical tweezers.
    Renaut C; Cluzel B; Dellinger J; Lalouat L; Picard E; Peyrade D; Hadji E; de Fornel F
    Sci Rep; 2013; 3():2290. PubMed ID: 23887310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incoherent Optical Tweezers on Black Titanium.
    Hashimoto S; Uenobo Y; Takao R; Yuyama KI; Shoji T; Linklater DP; Ivanova E; Juodkazis S; Kameyama T; Torimoto T; Tsuboi Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27586-27593. PubMed ID: 34085525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon microparticles as handles for optical tweezers experiments.
    Moura TA; Andrade UMS; Mendes JBS; Rocha MS
    Opt Lett; 2020 Mar; 45(5):1055-1058. PubMed ID: 32108768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon enhanced optical tweezers with gold-coated black silicon.
    Kotsifaki DG; Kandyla M; Lagoudakis PG
    Sci Rep; 2016 May; 6():26275. PubMed ID: 27195446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple traps created with an inclined dual-fiber system.
    Liu Y; Yu M
    Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dark-field optical tweezers for nanometrology of metallic nanoparticles.
    Pearce K; Wang F; Reece PJ
    Opt Express; 2011 Dec; 19(25):25559-69. PubMed ID: 22273949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical trapping force combining an optical fiber probe and an AFM metallic probe.
    Liu B; Yang L; Wang Y
    Opt Express; 2011 Feb; 19(4):3703-14. PubMed ID: 21369196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.
    Zhang L; Dou X; Min C; Zhang Y; Du L; Xie Z; Shen J; Zeng Y; Yuan X
    Nanoscale; 2016 May; 8(18):9756-63. PubMed ID: 27117313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct measurement of the nonconservative force field generated by optical tweezers.
    Wu P; Huang R; Tischer C; Jonas A; Florin EL
    Phys Rev Lett; 2009 Sep; 103(10):108101. PubMed ID: 19792342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axial Optical Traps: A New Direction for Optical Tweezers.
    Yehoshua S; Pollari R; Milstein JN
    Biophys J; 2015 Jun; 108(12):2759-66. PubMed ID: 26083913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.