These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18518486)

  • 1. Local ferromagnetic resonance imaging with magnetic resonance force microscopy.
    Obukhov Y; Pelekhov DV; Kim J; Banerjee P; Martin I; Nazaretski E; Movshovich R; An S; Gramila TJ; Batra S; Hammel PC
    Phys Rev Lett; 2008 May; 100(19):197601. PubMed ID: 18518486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing arrays of circular magnetic microdots by ferromagnetic resonance.
    Kakazei GN; Mewes T; Wigen PE; Hammel PC; Slavin AN; Pogorelov YG; Costa MD; Golub VO; Guslienko KY; Novosad V
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2811-26. PubMed ID: 18681017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale scanning probe ferromagnetic resonance imaging using localized modes.
    Lee I; Obukhov Y; Xiang G; Hauser A; Yang F; Banerjee P; Pelekhov DV; Hammel PC
    Nature; 2010 Aug; 466(7308):845-8. PubMed ID: 20703302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopy and imaging of edge modes in Permalloy nanodisks.
    Guo F; Belova LM; McMichael RD
    Phys Rev Lett; 2013 Jan; 110(1):017601. PubMed ID: 23383836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance force microscopy using ferromagnetic resonance of a magnetic tip excited by microwave transmission via a coaxial resonator.
    Kinoshita Y; Jun Li Y; Yoshimura S; Saito H; Sugawara Y
    Nanotechnology; 2017 Dec; 28(48):485709. PubMed ID: 28976360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale spin wave localization using ferromagnetic resonance force microscopy.
    Chia HJ; Guo F; Belova LM; McMichael RD
    Phys Rev Lett; 2012 Feb; 108(8):087206. PubMed ID: 22463567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-selective Imaging by Magnetic Exchange Force Microscopy Using Ferromagnetic Resonance.
    Sugawara Y; Arima E; Naitoh Y; Li YJ
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i11. PubMed ID: 25359800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance.
    Arima E; Naitoh Y; Li YJ; Yoshimura S; Saito H; Nomura H; Nakatani R; Sugawara Y
    Nanotechnology; 2015 Mar; 26(12):125701. PubMed ID: 25736463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splitting phenomenon of ferromagnetic resonance spectra in NiFe films deposited on periodically rippled sapphire substrates.
    Xu X; Zheng L; Jin L; Wen T; Liao Y; Tang X; Li Y; Zhong Z
    J Phys Condens Matter; 2023 Nov; 36(8):. PubMed ID: 37918010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range.
    Meckenstock R
    Rev Sci Instrum; 2008 Apr; 79(4):041101. PubMed ID: 18447516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance force microscopy with a ferromagnetic tip mounted on the force detector.
    Zhang Z; Hammel PC
    Solid State Nucl Magn Reson; 1998 Mar; 11(1-2):65-72. PubMed ID: 9650791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probe--sample coupling in the magnetic resonance force microscope.
    Suter A; Pelekhov DV; Roukes ML; Hammel PC
    J Magn Reson; 2002 Feb; 154(2):210-27. PubMed ID: 11846579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cantilever detected ferromagnetic resonance in thin Fe50Ni50, Co2FeAl0.5Si0.5 and Sr2FeMoO6 films using a double modulation technique.
    Alfonsov A; Ohmichi E; Leksin P; Omar A; Wang H; Wurmehl S; Yang F; Ohta H
    J Magn Reson; 2016 Sep; 270():183-186. PubMed ID: 27498338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative magnetic force microscopy on permalloy dots using an iron filled carbon nanotube probe.
    Wolny F; Obukhov Y; Mühl T; Weissker U; Philippi S; Leonhardt A; Banerjee P; Reed A; Xiang G; Adur R; Lee I; Hauser AJ; Yang FY; Pelekhov DV; Büchner B; Hammel PC
    Ultramicroscopy; 2011 Jul; 111(8):1360-5. PubMed ID: 21864777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A broadband ferromagnetic resonance dipper probe for magnetic damping measurements from 4.2 K to 300 K.
    He S; Panagopoulos C
    Rev Sci Instrum; 2016 Apr; 87(4):043110. PubMed ID: 27131657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The combination of micro-resonators with spatially resolved ferromagnetic resonance.
    Schaffers T; Meckenstock R; Spoddig D; Feggeler T; Ollefs K; Schöppner C; Bonetti S; Ohldag H; Farle M; Ney A
    Rev Sci Instrum; 2017 Sep; 88(9):093703. PubMed ID: 28964194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator.
    Suto H; Nagasawa T; Kudo K; Mizushima K; Sato R
    Nanotechnology; 2014 Jun; 25(24):245501. PubMed ID: 24872254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks.
    de Loubens G; Naletov VV; Klein O; Youssef JB; Boust F; Vukadinovic N
    Phys Rev Lett; 2007 Mar; 98(12):127601. PubMed ID: 17501155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromagnetic dissipation, dispersion, and mode conversion in thin permalloy platelets.
    Buess M; Haug T; Scheinfein MR; Back CH
    Phys Rev Lett; 2005 Apr; 94(12):127205. PubMed ID: 15903957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective actuation of arrays of carbon nanotubes using magnetic resonance.
    Volodin A; Santini CA; De Gendt S; Vereecken PM; Van Haesendonck C
    ACS Nano; 2013 Jul; 7(7):5777-83. PubMed ID: 23742039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.