These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 18518488)

  • 1. Controlling surface defect valence in colloids.
    Skacej G; Zannoni C
    Phys Rev Lett; 2008 May; 100(19):197802. PubMed ID: 18518488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable topological valence in nematic shells on spherocylindrical colloidal particles.
    de Oliveira EJ; de Oliveira IN; Lyra ML; Mirantsev LV
    Phys Rev E; 2016 Jan; 93(1):012703. PubMed ID: 26871131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating defect textures on relaxing nematic shells.
    Mbanga BL; Voorhes KK; Atherton TJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052504. PubMed ID: 25353812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Janus Nematic Colloids with Designable Valence.
    Čopar S; Ravnik M; Žumer S
    Materials (Basel); 2014 May; 7(6):4272-4281. PubMed ID: 28788676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line.
    Araki T; Tanaka H
    Phys Rev Lett; 2006 Sep; 97(12):127801. PubMed ID: 17025998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations of nematic and chiral nematic shells.
    Wand CR; Bates MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012502. PubMed ID: 25679633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional nematic colloidal crystals self-assembled by topological defects.
    Musevic I; Skarabot M; Tkalec U; Ravnik M; Zumer S
    Science; 2006 Aug; 313(5789):954-8. PubMed ID: 16917058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disclination lines at homogeneous and heterogeneous colloids immersed in a chiral liquid crystal.
    Melle M; Schlotthauer S; Hall CK; Diaz-Herrera E; Schoen M
    Soft Matter; 2014 Aug; 10(30):5489-502. PubMed ID: 24954626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent orientational ordering on a spherical surface modeled with a lattice spin model.
    Luo AM; Wenk S; Ilg P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022502. PubMed ID: 25215744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of topological defects around a colloidal particle or droplet dispersed in a nematic host.
    Andrienko D; Germano G; Allen MP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041701. PubMed ID: 11308861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of topological defects in nematic shells with a dumbbell-like shape.
    de Araújo CB; de Oliveira EJL; Lyra ML; Mirantsev LV; de Oliveira IN
    Soft Matter; 2022 Jun; 18(21):4189-4196. PubMed ID: 35605981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particles with changeable topology in nematic colloids.
    Ravnik M; Čopar S; Žumer S
    J Phys Condens Matter; 2015 Sep; 27(35):354111. PubMed ID: 26291540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect topologies in a nematic liquid crystal near a patchy colloid.
    Melle M; Schlotthauer S; Mazza MG; Klapp SH; Schoen M
    J Chem Phys; 2012 May; 136(19):194703. PubMed ID: 22612105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vortexlike topological defects in nematic colloids: chiral colloidal dimers and 2D crystals.
    Tkalec U; Ravnik M; Zumer S; Musevic I
    Phys Rev Lett; 2009 Sep; 103(12):127801. PubMed ID: 19792458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.
    Patti A; Cuetos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011403. PubMed ID: 23005413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase separations in liquid crystal-colloid mixtures.
    Matsuyama A; Hirashima R
    J Chem Phys; 2008 Jan; 128(4):044907. PubMed ID: 18248000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect-enhanced nematic surface order reconstruction.
    Ambrozic M; Kralj S; Virga EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031708. PubMed ID: 17500712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the degree of nematic ordering within dense aqueous dispersions of charged anisotropic colloids by 23Na NMR spectroscopy.
    Porion P; Faugère AM; Delville A
    J Phys Chem B; 2005 Nov; 109(43):20145-54. PubMed ID: 16853604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of fluid vesicles with in-plane orientational ordering.
    Ramakrishnan N; Sunil Kumar PB; Ipsen JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041922. PubMed ID: 20481768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of elastic interaction between colloidal particles in a nematic cell in the presence of an external electric or magnetic field.
    Chernyshuk SB; Tovkach OM; Lev BI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011706. PubMed ID: 22400582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.