These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 18518578)

  • 1. Resolving the optical spectrum of water: coordination and electrostatic effects.
    Hermann A; Schmidt WG; Schwerdtfeger P
    Phys Rev Lett; 2008 May; 100(20):207403. PubMed ID: 18518578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of the first coordination shell in liquid water.
    Wernet P; Nordlund D; Bergmann U; Cavalleri M; Odelius M; Ogasawara H; Näslund LA; Hirsch TK; Ojamäe L; Glatzel P; Pettersson LG; Nilsson A
    Science; 2004 May; 304(5673):995-9. PubMed ID: 15060287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transferable H2O interaction potential based on a single center multipole expansion: SCME.
    Wikfeldt KT; Batista ER; Vila FD; Jónsson H
    Phys Chem Chem Phys; 2013 Oct; 15(39):16542-56. PubMed ID: 23949215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water adsorption on Rh(111) at 20 K: from monomer to bulk amorphous ice.
    Yamamoto S; Beniya A; Mukai K; Yamashita Y; Yoshinobu J
    J Phys Chem B; 2005 Mar; 109(12):5816-23. PubMed ID: 16851634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.
    Gerber RB; Varner ME; Hammerich AD; Riikonen S; Murdachaew G; Shemesh D; Finlayson-Pitts BJ
    Acc Chem Res; 2015 Feb; 48(2):399-406. PubMed ID: 25647299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice.
    Imoto S; Xantheas SS; Saito S
    J Chem Phys; 2013 Feb; 138(5):054506. PubMed ID: 23406132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model.
    Shi L; Ni Y; Drews SE; Skinner JL
    J Chem Phys; 2014 Aug; 141(8):084508. PubMed ID: 25173022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Half or full core hole in density functional theory X-ray absorption spectrum calculations of water?
    Cavalleri M; Odelius M; Nordlund D; Nilsson A; Pettersson LG
    Phys Chem Chem Phys; 2005 Aug; 7(15):2854-8. PubMed ID: 16189603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Qian P
    J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast molecular dissociation of water in ice.
    Brena B; Nordlund D; Odelius M; Ogasawara H; Nilsson A; Pettersson LG
    Phys Rev Lett; 2004 Oct; 93(14):148302. PubMed ID: 15524849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic polarizability, Cauchy moments, and the optical absorption spectrum of liquid water: a sequential molecular dynamics/quantum mechanical approach.
    Mata RA; Cabral BJ; Millot C; Coutinho K; Canuto S
    J Chem Phys; 2009 Jan; 130(1):014505. PubMed ID: 19140620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of aromatic heterocycles with water: the driving force from free-jet rotational spectroscopy and model electrostatic calculations.
    Maris A; Melandri S; Miazzi M; Zerbetto F
    Chemphyschem; 2008 Jun; 9(9):1303-8. PubMed ID: 18470857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanics and dynamics simulations of various dispersant models on the water surface (001).
    Wei KC; Zhou H; Wen H; Xu W; Xu ZH
    J Mol Model; 2003 Jun; 9(3):142-52. PubMed ID: 12836055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio rigid water: effect on water structure, ion hydration, and thermodynamics.
    Leung K; Rempe SB
    Phys Chem Chem Phys; 2006 May; 8(18):2153-62. PubMed ID: 16751873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA solvation: a molecular dynamics simulation perspective.
    Auffinger P; Westhof E
    Biopolymers; 2000-2001; 56(4):266-74. PubMed ID: 11754340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Footprinting molecular electrostatic potential surfaces for calculation of solvation energies.
    Calero CS; Farwer J; Gardiner EJ; Hunter CA; Mackey M; Scuderi S; Thompson S; Vinter JG
    Phys Chem Chem Phys; 2013 Nov; 15(41):18262-73. PubMed ID: 24064723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of molecular packing and chemical association in liquid water using quasichemical theory.
    Paliwal A; Asthagiri D; Pratt LR; Ashbaugh HS; Paulaitis ME
    J Chem Phys; 2006 Jun; 124(22):224502. PubMed ID: 16784293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: study of the optical and magnetic properties of diazines in water.
    Manzoni V; Lyra ML; Coutinho K; Canuto S
    J Chem Phys; 2011 Oct; 135(14):144103. PubMed ID: 22010694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.