These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18519193)

  • 1. Researching on resonance characteristics influenced by the structure parameters of 1-3-2 piezocomposites plate.
    Li L; Qin L; Wang LK; Wan YY; Sun BS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):946-51. PubMed ID: 18519193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of triangular pillar geometry on high- frequency piezocomposite transducers.
    Yin J; Lee M; Brown J; Cherin E; Foster F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):957-68. PubMed ID: 20378458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the radial composite piezoelectric ceramic transducer in radial vibration.
    Lin S
    Ultrasonics; 2007 Mar; 46(1):51-9. PubMed ID: 17166538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexural vibration analyses of piezoelectric ceramic tubes with mass loads in ultrasonic actuators.
    Zhang H; Zhang SY; Wang TH
    Ultrasonics; 2007 Dec; 47(1-4):82-9. PubMed ID: 17869319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The theoretical model of 1-3-2 piezocomposites.
    Li L; Wang LK; Qin L; Lv Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1476-82. PubMed ID: 19574158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active fiber composites for the generation of Lamb waves.
    Birchmeier M; Gsell D; Juon M; Brunner AJ; Paradies R; Dual J
    Ultrasonics; 2009 Jan; 49(1):73-82. PubMed ID: 18621408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.
    Chen GS; Liu HC; Lin YC; Lin YL
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical modelling of frequency dependent elastic loss in composite piezoelectric transducers.
    Orr LA; Mulholland AJ; O'Leary RL; Parr A; Pethrick RA; Hayward G
    Ultrasonics; 2007 Dec; 47(1-4):130-7. PubMed ID: 17980896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of piezoelectric properties for textured SBN ceramics.
    Kimura M; Ogawa H; Kuroda D; Sawada T; Higuchi Y; Takagi H; Sakabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2482-6. PubMed ID: 18276542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
    Manh T; Jensen GU; Johansen TF; Hoff L
    Ultrasonics; 2013 Aug; 53(6):1141-9. PubMed ID: 23522684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and performance of high-frequency composite transducers with triangular-pillar geometry.
    Brown JA; Chérin E; Yin J; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):827-36. PubMed ID: 19406712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling 1-3 composite piezoelectrics: thickness-mode oscillations.
    Smith WA; Auld BA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):40-7. PubMed ID: 18267555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications.
    Kwok KW; Chan HC; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the properties of tonpilz transducers fabricated with 001 fiber-textured lead magnesium niobate-lead titanate ceramic and single crystals.
    Brosnan KH; Messing GL; Markley DC; Meyer RJ
    J Acoust Soc Am; 2009 Nov; 126(5):2257-65. PubMed ID: 19894807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of piezoelectric transducers with combined pseudospectral and finite-difference methods.
    Filoux E; Callé S; Certon D; Lethiecq M; Levassort F
    J Acoust Soc Am; 2008 Jun; 123(6):4165-73. PubMed ID: 18537368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction to the special issue on the applications of ferroelectrics--part II.
    Tsurumi T; Bell AJ; Clem PG; Gruverman A; Kholkin A; Lang SB; Rhee S; Trolier-McKinstry S; Uchiyama K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):938-41. PubMed ID: 18519191
    [No Abstract]   [Full Text] [Related]  

  • 17. A FEM-based method using harmonic overtones to determine the effective elastic, dielectric, and piezoelectric parameters of freely vibrating thick piezoelectric disks.
    Jonsson UG; Andersson BM; Lindahl OA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):243-55. PubMed ID: 23287929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead-free piezoelectric-metal-cavity (PMC) actuators.
    Lam KH; Lin DM; Kwok KW; Lai-Wa Chan H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1682-5. PubMed ID: 18986912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sintering and piezoelectric properties of KNN ceramics doped with KZT.
    Ryu J; Choi JJ; Hahn BD; Park DS; Yoon WH; Kim KY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2510-5. PubMed ID: 18276547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead-free piezoelectric ceramic transducer in the donor-doped K1/2Na1/2NbO3 solid solution system.
    Hagh NM; Jadidian B; Ashbahian E; Safari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):214-24. PubMed ID: 18334327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.