BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 18519202)

  • 1. Piezoelectricity of chiral polymeric fiber and its application in biomedical engineering.
    Tajitsu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1000-8. PubMed ID: 18519202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental study on improvement of piezoelectricity of poly(ι-lactic acid) and its application to film actuators.
    Tajitsu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1625-9. PubMed ID: 25004534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helical conformation endows poly-l-lactic acid fibers with a piezoelectric charge under tensile stress.
    Harada Y; Kadono K; Terao T; Suzuki M; Ikada Y; Tomita N
    J Vet Med Sci; 2013; 75(9):1187-92. PubMed ID: 23665512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy.
    Iqbal Q; Bernstein P; Zhu Y; Rahamim J; Cebe P; Staii C
    Nanotechnology; 2015 Mar; 26(10):105702. PubMed ID: 25683087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA.
    Loo SC; Tan HT; Ooi CP; Boey YC
    Acta Biomater; 2006 May; 2(3):287-96. PubMed ID: 16701888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro hemocompatibility studies of drug-loaded poly-(L-lactic acid) fibers.
    Nguyen KT; Su SH; Sheng A; Wawro D; Schwade ND; Brouse CF; Greilich PE; Tang L; Eberhart RC
    Biomaterials; 2003 Dec; 24(28):5191-201. PubMed ID: 14568436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.
    Yang F; Murugan R; Wang S; Ramakrishna S
    Biomaterials; 2005 May; 26(15):2603-10. PubMed ID: 15585263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications.
    Valente TA; Silva DM; Gomes PS; Fernandes MH; Santos JD; Sencadas V
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3241-9. PubMed ID: 26756809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation.
    Loo JS; Ooi CP; Boey FY
    Biomaterials; 2005 Apr; 26(12):1359-67. PubMed ID: 15482823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of piezoelectric poly-L-lactic acid films in promoting ossification in vivo.
    Shimono T; Matsunaga S; Fukada E; Hattori T; Shikinami Y
    In Vivo; 1996; 10(5):471-6. PubMed ID: 8899424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Polymer networks as actuator and sensor systems to be used for automation of biomedical devices].
    Richter A; Krause W; Lienig J; Arndt KF
    Biomed Tech (Berl); 2005 Mar; 50(3):66-8. PubMed ID: 15832578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of GMP-grade radioactive holmium loaded poly(L-lactic acid) microspheres for clinical application.
    Zielhuis SW; Nijsen JF; de Roos R; Krijger GC; van Rijk PP; Hennink WE; van het Schip AD
    Int J Pharm; 2006 Mar; 311(1-2):69-74. PubMed ID: 16439073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward stronger transcrystalline layers in poly(L-lactic acid)/natural fiber biocomposites with the aid of an accelerator of chain mobility.
    Xu H; Xie L; Jiang X; Li XJ; Li Y; Zhang ZJ; Zhong GJ; Li ZM
    J Phys Chem B; 2014 Jan; 118(3):812-23. PubMed ID: 24298881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro flexural properties of hydroxyapatite and self-reinforced poly(L-lactic acid).
    Wright-Charlesworth DD; King JA; Miller DM; Lim CH
    J Biomed Mater Res A; 2006 Sep; 78(3):541-9. PubMed ID: 16736480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
    Engelmayr GC; Sacks MS
    J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propane-1,2-diols from dilactides, oligolactides, or poly-L-lactic acid (PLLA): from plastic waste to chiral bulk chemicals.
    Shuklov IA; Dubrovina NV; Schulze J; Tietz W; Kühlein K; Börner A
    Chemistry; 2014 Jan; 20(4):957-60. PubMed ID: 24403172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio elasticity of poly(lactic acid) crystals.
    Lin T; Liu XY; He C
    J Phys Chem B; 2010 Mar; 114(9):3133-9. PubMed ID: 20151705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-coated poly(L-lactic acid) fibers provide a substrate for differentiation of human skeletal muscle cells.
    Cronin EM; Thurmond FA; Bassel-Duby R; Williams RS; Wright WE; Nelson KD; Garner HR
    J Biomed Mater Res A; 2004 Jun; 69(3):373-81. PubMed ID: 15127383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber.
    Crow BB; Nelson KD
    Biopolymers; 2006 Apr; 81(6):419-27. PubMed ID: 16419061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.