BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18519208)

  • 1. Dielectric properties of Ni-coated BaTiO/sub 3-/PMMA composite.
    Park JM; Lee HY; Kim JJ; Park ET; Chung YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1038-42. PubMed ID: 18519208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of barium titanate nanoparticle sphere arrays and their dielectric properties.
    Wada S; Yazawa A; Hoshina T; Kameshima Y; Kakemoto H; Tsurumi T; Kuroiwa Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1895-9. PubMed ID: 18986885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced dielectric properties of three-phase-percolative composites based on thermoplastic-ceramic matrix (BaTiO3 + PVDF) and ZnO radial nanostructures.
    Wang G
    ACS Appl Mater Interfaces; 2010 May; 2(5):1290-3. PubMed ID: 20415481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of carbon nanotube reinforced poly(methyl methacrylate) nanocomposites.
    Yu S; Juay YK; Young MS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1852-7. PubMed ID: 18572586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric properties of Ba0.6Sr0.4TiO3-Sr(Ga0.5Ta0.5)O3 solid solutions.
    Xu Y; Liu T; He Y; Yuan X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2369-76. PubMed ID: 19049916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High energy density nanocomposites based on surface-modified BaTiO(3) and a ferroelectric polymer.
    Kim P; Doss NM; Tillotson JP; Hotchkiss PJ; Pan MJ; Marder SR; Li J; Calame JP; Perry JW
    ACS Nano; 2009 Sep; 3(9):2581-92. PubMed ID: 19655729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface engineered BaTiO₃/SrTiO₃ heterostructures with optimized high-frequency dielectric properties.
    Liu M; Ma C; Collins G; Liu J; Chen C; Dai C; Lin Y; Shui L; Xiang F; Wang H; He J; Jiang J; Meletis EI; Cole MW
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5761-5. PubMed ID: 23075425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of TiO(2)-PMMA nanocomposite: using methacrylic acid as a coupling agent.
    Khaled SM; Sui R; Charpentier PA; Rizkalla AS
    Langmuir; 2007 Mar; 23(7):3988-95. PubMed ID: 17316031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer.
    Son DI; Park DH; Choi WK; Cho SH; Kim WT; Kim TW
    Nanotechnology; 2009 May; 20(19):195203. PubMed ID: 19420634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid multiferroic nanostructure with magnetic-dielectric coupling.
    Narayanan TN; Mandal BP; Tyagi AK; Kumarasiri A; Zhan X; Hahm MG; Anantharaman MR; Lawes G; Ajayan PM
    Nano Lett; 2012 Jun; 12(6):3025-30. PubMed ID: 22545916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric properties of Ba0.6Sr0.4TiO3-La(B0.5Ti0.5)O3 (B=Mg, Zn) ceramics.
    Xu Y; Liu T; He Y; Yuan X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2343-9. PubMed ID: 19942521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of dielectric permittivity of perovskite-type artificial superlattices.
    Kinbara H; Harigai T; Kakemoto H; Wada S; Tsurumi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2541-7. PubMed ID: 18276552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive nano-titania ceramics with biomechanical compatibility prepared by doping with piezoelectric BaTiO(3).
    Li Z; Qu Y; Zhang X; Yang B
    Acta Biomater; 2009 Jul; 5(6):2189-95. PubMed ID: 19282264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of SiO2/(PMMA/Fe3O4) magnetic nanocomposites.
    Wang Z; Guo Y; Li S; Sun Y; He N
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1797-802. PubMed ID: 18572580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new effect of ultrasonication on the formation of BaTiO(3) nanoparticles.
    Dang F; Kato K; Imai H; Wada S; Haneda H; Kuwabara M
    Ultrason Sonochem; 2010 Feb; 17(2):310-4. PubMed ID: 19747870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization dependent chemistry of ferroelectric BaTiO3(001) domains.
    Mi Y; Geneste G; Rault JE; Mathieu C; Pancotti A; Barrett N
    J Phys Condens Matter; 2012 Jul; 24(27):275901. PubMed ID: 22713345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence.
    Yang K; Huang X; Xie L; Wu C; Jiang P; Tanaka T
    Macromol Rapid Commun; 2012 Nov; 33(22):1921-6. PubMed ID: 22887717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave absorption enhancement and electron microscopy characterization of BaTiO₃ nano-torus.
    Xia F; Liu J; Gu D; Zhao P; Zhang J; Che R
    Nanoscale; 2011 Sep; 3(9):3860-7. PubMed ID: 21826321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The piezoelectric response of nanotwinned BaTiO3.
    Hlinka J; Ondrejkovic P; Marton P
    Nanotechnology; 2009 Mar; 20(10):105709. PubMed ID: 19417537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the sol-concentration on the structural and dielectric properties of Pb(0.3)Sr(0.7)TiO(3) thin films derived by the sol-gel method.
    Zhou D; Wu W; Jin D; Cheng J; Meng Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1034-7. PubMed ID: 18519207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.