BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 18519259)

  • 1. Effects of light and nutrients on seedlings of tropical Bauhinia lianas and trees.
    Cai ZQ; Poorter L; Han Q; Bongers F
    Tree Physiol; 2008 Aug; 28(8):1277-85. PubMed ID: 18519259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seedling growth strategies in Bauhinia species: comparing lianas and trees.
    Cai ZQ; Poorter L; Cao KF; Bongers F
    Ann Bot; 2007 Oct; 100(4):831-8. PubMed ID: 17720978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.
    Chmura DJ; Modrzyński J; Chmielarz P; Tjoelker MG
    Plant Biol (Stuttg); 2017 Mar; 19(2):172-182. PubMed ID: 27981788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient.
    Montgomery R
    Tree Physiol; 2004 Feb; 24(2):155-67. PubMed ID: 14676032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lianas always outperform tree seedlings regardless of soil nutrients: results from a long-term fertilization experiment.
    Pasquini SC; Wright SJ; Santiago LS
    Ecology; 2015 Jul; 96(7):1866-76. PubMed ID: 26378309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic and morphological acclimation of seedlings of tropical lianas to changes in the light environment.
    Avalos G; Mulkey SS
    Am J Bot; 2014 Dec; 101(12):2088-96. PubMed ID: 25480706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dry-season irrigation on leaf physiology and biomass allocation in tropical lianas and trees.
    Smith-Martin CM; Bastos CL; Lopez OR; Powers JS; Schnitzer SA
    Ecology; 2019 Nov; 100(11):e02827. PubMed ID: 31325383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance.
    Coste S; Roggy JC; Imbert P; Born C; Bonal D; Dreyer E
    Tree Physiol; 2005 Sep; 25(9):1127-37. PubMed ID: 15996956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits.
    Lusk CH; Kelly JW; Gleason SM
    Ann Bot; 2013 Mar; 111(3):479-88. PubMed ID: 23264237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting cost-benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China.
    Zhu SD; Cao KF
    Oecologia; 2010 Jul; 163(3):591-9. PubMed ID: 20191291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No evidence that elevated CO2 gives tropical lianas an advantage over tropical trees.
    Marvin DC; Winter K; Burnham RJ; Schnitzer SA
    Glob Chang Biol; 2015 May; 21(5):2055-69. PubMed ID: 25471795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.
    Modrzyński J; Chmura DJ; Tjoelker MG
    Tree Physiol; 2015 Aug; 35(8):879-93. PubMed ID: 26116924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature.
    Dusenge ME; Wallin G; Gårdesten J; Niyonzima F; Adolfsson L; Nsabimana D; Uddling J
    Oecologia; 2015 Apr; 177(4):1183-94. PubMed ID: 25694041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species.
    Niinemets U; Portsmuth A; Truus L
    Ann Bot; 2002 Feb; 89(2):191-204. PubMed ID: 12099350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest.
    Martínez-Izquierdo L; García MM; Powers JS; Schnitzer SA
    Ecology; 2016 Jan; 97(1):215-24. PubMed ID: 27008790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes.
    Slot M; Winter K
    New Phytol; 2017 May; 214(3):1103-1117. PubMed ID: 28211583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen deposition does not affect the impact of shade on Quercus acutissima seedlings.
    Li M; Guo W; Du N; Xu Z; Guo X
    PLoS One; 2018; 13(3):e0194261. PubMed ID: 29534093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique competitive effects of lianas and trees in a tropical forest understory.
    Wright A; Tobin M; Mangan S; Schnitzer SA
    Oecologia; 2015 Feb; 177(2):561-9. PubMed ID: 25502290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.
    Lilles EB; Astrup R; Lefrançois ML; David Coates K
    Tree Physiol; 2014 Dec; 34(12):1334-47. PubMed ID: 25422385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.