These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 18520382)
1. Silva et al: Repair of cranial bone defects with calcium phosphate ceramic implant or autogenous bone graft. Amasha RR; Kwan MD; Longaker MT J Craniofac Surg; 2008 May; 19(3):675-7. PubMed ID: 18520382 [No Abstract] [Full Text] [Related]
2. Repair of cranial bone defects with calcium phosphate ceramic implant or autogenous bone graft. da Silva RV; Bertran CA; Kawachi EY; Camilli JA J Craniofac Surg; 2007 Mar; 18(2):281-6. PubMed ID: 17414276 [TBL] [Abstract][Full Text] [Related]
3. Sinus floor augmentation with recombinant human growth and differentiation factor-5 (rhGDF-5): a pilot study in the Goettingen miniature pig comparing autogenous bone and rhGDF-5. Gruber RM; Ludwig A; Merten HA; Pippig S; Kramer FJ; Schliephake H Clin Oral Implants Res; 2009 Feb; 20(2):175-82. PubMed ID: 19077151 [TBL] [Abstract][Full Text] [Related]
4. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Yu D; Li Q; Mu X; Chang T; Xiong Z Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295 [TBL] [Abstract][Full Text] [Related]
5. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. Cavalcanti SC; Pereira CL; Mazzonetto R; de Moraes M; Moreira RW J Craniomaxillofac Surg; 2008 Sep; 36(6):354-9. PubMed ID: 18424059 [TBL] [Abstract][Full Text] [Related]
6. [Experimental application of calcium phosphate granulate for the substitution of conventional bone transplants (author's transl)]. Köster K; Ehard H; Kubicek J; Heide H Z Orthop Ihre Grenzgeb; 1979 Jun; 117(3):398-403. PubMed ID: 380203 [TBL] [Abstract][Full Text] [Related]
7. Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: an experimental study in rats. Lerouxel E; Weiss P; Giumelli B; Moreau A; Pilet P; Guicheux J; Corre P; Bouler JM; Daculsi G; Malard O Biomaterials; 2006 Sep; 27(26):4566-72. PubMed ID: 16698077 [TBL] [Abstract][Full Text] [Related]
8. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
9. The effects of recombinant human growth/differentiation factor-5 (rhGDF-5) on bone regeneration around titanium dental implants in barrier membrane-protected defects: a pilot study in the mandible of beagle dogs. Weng D; Poehling S; Pippig S; Bell M; Richter EJ; Zuhr O; Hürzeler MB Int J Oral Maxillofac Implants; 2009; 24(1):31-7. PubMed ID: 19344022 [TBL] [Abstract][Full Text] [Related]
10. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. Habibovic P; Kruyt MC; Juhl MV; Clyens S; Martinetti R; Dolcini L; Theilgaard N; van Blitterswijk CA J Orthop Res; 2008 Oct; 26(10):1363-70. PubMed ID: 18404698 [TBL] [Abstract][Full Text] [Related]
11. The effect of osteogenic growth factors on bone growth into a ceramic filled defect around an implant. Clarke SA; Brooks RA; Lee PT; Rushton N J Orthop Res; 2004 Sep; 22(5):1016-24. PubMed ID: 15304274 [TBL] [Abstract][Full Text] [Related]
12. Effects of sodium selenite and amiloride on calvarial calcification in closing small cranial defects. Yılmaz DM; Hacıyakupoğlu E; Hacıyakupoğlu S; Polat S; Ozgür H; Sencar L; Dağlıoğlu K J Neurosurg; 2011 Feb; 114(2):478-84. PubMed ID: 20672896 [TBL] [Abstract][Full Text] [Related]
13. Assessment of the effect of a biphasic ceramic on bone response in a rat calvarial defect model. Develioğlu H; Saraydin SU; Bolayir G; Dupoirieux L J Biomed Mater Res A; 2006 Jun; 77(3):627-31. PubMed ID: 16514598 [TBL] [Abstract][Full Text] [Related]
14. A feasibility study evaluating an in situ formed synthetic biodegradable membrane for guided bone regeneration in dogs. Jung RE; Lecloux G; Rompen E; Ramel CF; Buser D; Hammerle CH Clin Oral Implants Res; 2009 Feb; 20(2):151-61. PubMed ID: 19191792 [TBL] [Abstract][Full Text] [Related]
15. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone. Dietze S; Bayerlein T; Proff P; Hoffmann A; Gedrange T Folia Morphol (Warsz); 2006 Feb; 65(1):63-5. PubMed ID: 16783740 [TBL] [Abstract][Full Text] [Related]
16. Magnesium-based bone cement and bone void filler: preliminary experimental studies. Schendel SA; Peauroi J J Craniofac Surg; 2009 Mar; 20(2):461-4. PubMed ID: 19305245 [TBL] [Abstract][Full Text] [Related]
17. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Pripatnanont P; Nuntanaranont T; Vongvatcharanon S Int J Oral Maxillofac Surg; 2009 Apr; 38(4):356-62. PubMed ID: 19278833 [TBL] [Abstract][Full Text] [Related]
19. Ceramic bone graft substitute with equine bone protein extract is comparable to allograft in terms of implant fixation: a study in dogs. Baas J; Elmengaard B; Bechtold J; Chen X; Søballe K Acta Orthop; 2008 Dec; 79(6):841-50. PubMed ID: 19085504 [TBL] [Abstract][Full Text] [Related]
20. Mixing conditions for cell scaffolds affect the bone formation induced by bone engineering with human bone marrow stromal cells, beta-tricalcium phosphate granules, and rhBMP-2. Uchida M; Agata H; Sagara H; Shinohara Y; Kagami H; Asahina I J Biomed Mater Res A; 2009 Oct; 91(1):84-91. PubMed ID: 18767063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]