These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 185207)
21. Purification and general properties of guanosine 3':5'-monophosphate-dependent protein kinase from guinea pig fetal lung. Kuo JF; Kuo WN; Shoji M; Davis CW; Seery VL; Donnelly TE J Biol Chem; 1976 Mar; 251(6):1759-66. PubMed ID: 176161 [TBL] [Abstract][Full Text] [Related]
22. Comparison of mode of activation of guanosine 3':5'-monophosphate-dependent and adenosine 3':5'-monophosphate-dependent protein kinases from silkworm. Takai Y; Nakaya S; Inoue M; Kishimoto A; Nishiyama K; Yamamura H; Nishizuka Y J Biol Chem; 1976 Mar; 251(5):1481-7. PubMed ID: 176153 [TBL] [Abstract][Full Text] [Related]
23. Comparison of functional specificities of cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Hashimoto E Kobe J Med Sci; 1979 Jun; 25(2):63-80. PubMed ID: 224247 [No Abstract] [Full Text] [Related]
24. Stimulation by polydeoxyribonucleotide of histone phosphorylation by guanosine 3':5'-monophosphate-dependent protein kinase. Hashimoto E; Kuroda Y; Ku Y; Nishizuka Y Biochem Biophys Res Commun; 1979 Mar; 87(1):200-6. PubMed ID: 222266 [No Abstract] [Full Text] [Related]
25. Protein kinases associated with peripheral nerve myelin. 1. Phosphorylation of endogenous myelin proteins and exogenous substrates. Singh H; Spritz N Biochim Biophys Acta; 1976 Oct; 448(2):325-37. PubMed ID: 9157 [TBL] [Abstract][Full Text] [Related]
26. Cyclic nucleotide dependent protein kinase and the phosphorylation of endogenous proteins of retinal rod outer segments. Farber DB; Brown BM; Lllley RN Biochemistry; 1979 Jan; 18(2):370-8. PubMed ID: 217412 [TBL] [Abstract][Full Text] [Related]
27. Phosphorylation of high mobility group 14 protein by cyclic nucleotide-dependent protein kinases. Walton GM; Spiess J; Gill GN J Biol Chem; 1982 Apr; 257(8):4661-8. PubMed ID: 6279643 [TBL] [Abstract][Full Text] [Related]
28. Studies on the mechanism of action of histone kinase dependent on adenosine 3':5'-monophosphate. Evidence for involvement of histidine and lysine residues in the phosphotransferase reaction. Kochetkov SN; Bulargina TV; Sashchenko LP; Severin ES Eur J Biochem; 1977 Nov; 81(1):111-8. PubMed ID: 201463 [TBL] [Abstract][Full Text] [Related]
29. The substrate specificity of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of rabbit skeletal muscle. Yeaman SJ; Cohen P; Watson DC; Dixon GH Biochem J; 1977 Feb; 162(2):411-21. PubMed ID: 192223 [TBL] [Abstract][Full Text] [Related]
30. An H3 histone-specific kinase isolated from bovine thymus chromatin. Shoemaker CB; Chalkley R J Biol Chem; 1978 Aug; 253(16):5802-7. PubMed ID: 209051 [TBL] [Abstract][Full Text] [Related]
31. The lysine-rich H1 histones from the slime moulds, Physarum polycephalum and Dictyostelium discoideum lack phosphorylation sites recognised by cyclic AMP-dependent protein kinase in vitro. Heads RJ; Carpenter BG; Rickenberg HV; Chambers TC FEBS Lett; 1992 Jul; 306(1):66-70. PubMed ID: 1321059 [TBL] [Abstract][Full Text] [Related]
32. The hormonal control of activity of skeletal muscle phosphorylase kinase. Amino-acid sequences at the two sites of action of adenosine-3':5'-monophosphate-dependent protein kinase. Cohen P; Watson DC; Dixon GH Eur J Biochem; 1975 Feb; 51(1):79-92. PubMed ID: 164350 [TBL] [Abstract][Full Text] [Related]
33. Influence of histone phosphorylation upon histone-histone interactions studied in vitro. Szopa J; Jacob G; Arfmann HA Biochemistry; 1980 Mar; 19(5):987-90. PubMed ID: 6243962 [TBL] [Abstract][Full Text] [Related]
35. Mouse spleen cell nuclear protein kinases and the stimulating effect of dsDNA on NHP phosphorylation by cyclic AMP-independent protein kinase in vitro. Ohtsuki K; Yamada E; Nakamura M; Ishida N J Biochem; 1980 Jan; 87(1):35-45. PubMed ID: 6244264 [TBL] [Abstract][Full Text] [Related]
36. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3':5'-monophosphate-dependent protein kinase. Kishimoto A; Nishiyama K; Nakanishi H; Uratsuji Y; Nomura H; Takeyama Y; Nishizuka Y J Biol Chem; 1985 Oct; 260(23):12492-9. PubMed ID: 2413024 [TBL] [Abstract][Full Text] [Related]
37. Immunological distinction between guanosine 3':5'-monophosphate-dependent and adenosine 3':5'-monophosphate-dependent protein kinases. Walter U; Miller P; Wilson F; Menkes D; Greengard P J Biol Chem; 1980 Apr; 255(8):3757-62. PubMed ID: 6154053 [TBL] [Abstract][Full Text] [Related]
38. Affinity purification of newly phosphorylated protein molecules. Thiophosphorylation and recovery of histones H1, H2B, and H3 and the high mobility group protein HMG-1 using adenosine 5'-O-(3-thiotriphosphate) and cyclic AMP-dependent protein kinase. Sun IY; Johnson EM; Allfrey VG J Biol Chem; 1980 Jan; 255(2):742-7. PubMed ID: 6243285 [No Abstract] [Full Text] [Related]
39. [Study by the spin-label method of relaxation properties of protein kinase, its subunits and the catalytic subunit--histone H1 complex]. Timofeev VP; Bagirov EM; Gabibov AG; Kochetkov SN Mol Biol (Mosk); 1982; 16(6):1263-70. PubMed ID: 6296665 [TBL] [Abstract][Full Text] [Related]
40. Comparison of the interaction of cyclic nucleotide-dependent protein kinases with mononucleosomes and free histones. Walton GM; Gill GN Biochim Biophys Acta; 1981 Dec; 656(2):155-9. PubMed ID: 6274407 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]