These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 18522073)

  • 1. Capacitive sensors for detecting proximity and response.
    Badelt SW; Blaisdell AP
    Behav Res Methods; 2008 May; 40(2):613-21. PubMed ID: 18522073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An application of the image processing system for detecting and controlling pigeon's peck location.
    Hori K; Watanabe S
    Behav Brain Res; 1987 Oct; 26(1):75-8. PubMed ID: 3675837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Kinect-based system for automatic recording of some pigeon behaviors.
    Lyons DM; MacDonall JS; Cunningham KM
    Behav Res Methods; 2015 Dec; 47(4):1044-1054. PubMed ID: 25381022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple 2-transistor touch or lick detector circuit.
    Slotnick B
    J Exp Anal Behav; 2009 Mar; 91(2):253-5. PubMed ID: 19794837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARENA 2.0: The next generation automated remote environmental navigation apparatus to facilitate cross-species comparisons in behavior and cognition.
    Schroeder J; Garlick D; Blaisdell AP
    Behav Res Methods; 2018 Apr; 50(2):773-785. PubMed ID: 28577278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microphonics in biopotential measurements with capacitive electrodes.
    Luna-Lozano PS; Pallas-Areny R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3487-90. PubMed ID: 21097027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic monitoring of apomorphine-induced pecking in pigeons.
    J Exp Anal Behav; 1970 May; 13(3):349-50. PubMed ID: 5530067
    [No Abstract]   [Full Text] [Related]  

  • 8. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection.
    Alhoshany A; Sivashankar S; Mashraei Y; Omran H; Salama KN
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automated apparatus for presenting depth-rotated three-dimensional objects in human and animal object recognition research.
    Friedman A; Spetch ML; Lank I
    Behav Res Methods Instrum Comput; 2003 May; 35(2):343-9. PubMed ID: 12834095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Method for Proximity Detection of Moving Targets Using a Large-Scale Planar Capacitive Sensor System.
    Ye Y; Deng J; Shen S; Hou Z; Liu Y
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27196905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the design of capacitive sensors using flexible electrodes for multipurpose measurements.
    Thibault P; Diribarne P; Fournier T; Perraud S; Puech L; Wolf PE; Rousset B; Vallcorba R
    Rev Sci Instrum; 2007 Apr; 78(4):043903. PubMed ID: 17477677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile integrated circuit activity monitor for small animals.
    Czech DA
    Physiol Behav; 1984 May; 32(5):871-4. PubMed ID: 6494293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires.
    Wang J; Jiu J; Nogi M; Sugahara T; Nagao S; Koga H; He P; Suganuma K
    Nanoscale; 2015 Feb; 7(7):2926-32. PubMed ID: 25588044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A GPS logger and software for analysis of homing in pigeons and small mammals.
    Steiner I; Bürgi C; Werffeli S; Dell'Omo G; Valenti P; Tröster G; Wolfer DP; Lipp HP
    Physiol Behav; 2000 Dec; 71(5):589-96. PubMed ID: 11239679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An apparatus for automating object discriminations with pigeons.
    Cabe PA
    Percept Mot Skills; 1980 Jun; 50(3 Pt 1):815-8. PubMed ID: 7402863
    [No Abstract]   [Full Text] [Related]  

  • 16. The influence of "preparedness" on autoshaping, schedule performance, and choice.
    Burns JD; Malone JC
    J Exp Anal Behav; 1992 Nov; 58(3):399-413. PubMed ID: 1447541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crack-Enhanced Microfluidic Stretchable E-Skin Sensor.
    Ho DH; Song R; Sun Q; Park WH; Kim SY; Pang C; Kim DH; Kim SY; Lee J; Cho JH
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44678-44686. PubMed ID: 29205030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature.
    An BW; Heo S; Ji S; Bien F; Park JU
    Nat Commun; 2018 Jul; 9(1):2458. PubMed ID: 29970893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.
    Poghossian A; Bäcker M; Mayer D; Schöning MJ
    Nanoscale; 2015 Jan; 7(3):1023-31. PubMed ID: 25470772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 0.9m Long 0.5gf Resolution Catheter-based Force Sensor for Real-Time Force Monitoring of Cardiovascular Surgery.
    Jeon S; Lee J; Ryu W; Chae Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3338-3341. PubMed ID: 30441103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.