BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 18522090)

  • 1. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.
    Samaras C; Meisterling K
    Environ Sci Technol; 2008 May; 42(9):3170-6. PubMed ID: 18522090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.
    Michalek JJ; Chester M; Jaramillo P; Samaras C; Shiau CS; Lave LB
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16554-8. PubMed ID: 21949359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle.
    Graver BM; Frey HC; Choi HW
    Environ Sci Technol; 2011 Oct; 45(20):9044-51. PubMed ID: 21902202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective.
    Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J
    Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study.
    Da C; Gu X; Lu C; Hua R; Chang X; Cheng Y; Qian F; Wang Y
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):76286-76297. PubMed ID: 35668254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.
    Raykin L; MacLean HL; Roorda MJ
    Environ Sci Technol; 2012 Jun; 46(11):6363-70. PubMed ID: 22568681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.
    Shen W; Han W; Wallington TJ
    Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental and economic evaluation of bioenergy in Ontario, Canada.
    Zhang Y; Habibi S; MacLean HL
    J Air Waste Manag Assoc; 2007 Aug; 57(8):919-33. PubMed ID: 17824282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.
    Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ
    Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.
    Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2007 Sep; 41(17):6290-6. PubMed ID: 17937317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental and energy implications of plug-in hybrid-electric vehicles.
    Stephan CH; Sullivan J
    Environ Sci Technol; 2008 Feb; 42(4):1185-90. PubMed ID: 18351091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving deep cuts in the carbon intensity of U.S. automobile transportation by 2050: complementary roles for electricity and biofuels.
    Scown CD; Taptich M; Horvath A; McKone TE; Nazaroff WW
    Environ Sci Technol; 2013 Aug; 47(16):9044-52. PubMed ID: 23906086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Climate Impact Variations Due to Fueling Behavior of Plug-in Hybrid Vehicle Owners in the US.
    Wolfram P; Hertwich EG
    Environ Sci Technol; 2021 Jan; 55(1):65-72. PubMed ID: 33327721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.
    Cai H; Wang MQ
    Environ Sci Technol; 2014 Oct; 48(20):12445-53. PubMed ID: 25259852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.
    Sioshansi R; Denholm P
    Environ Sci Technol; 2009 Feb; 43(4):1199-204. PubMed ID: 19320180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.
    Tamayao MA; Michalek JJ; Hendrickson C; Azevedo IM
    Environ Sci Technol; 2015 Jul; 49(14):8844-55. PubMed ID: 26125323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.