These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18522315)

  • 1. [Regulation of carbon flows in the tricarboxylic acid cycle-glyoxylate bypass system in Rhodopseudomonas palustris under different growth conditions].
    Eprintsev AT; Klimova MA; Falaleeva MI; Kompantseva EI
    Mikrobiologiia; 2008; 77(2):158-62. PubMed ID: 18522315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical properties of malate dehydrogenase from the bacterium Rhodopseudomonas palustris strain f8pt.
    Eprintsev AT; Falaleeva MI; Klimova MA; Kompantseva EI
    Biochemistry (Mosc); 2006 Jun; 71(6):692-5. PubMed ID: 16827662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Role of malate dehydrogenase isoforms in the regulation of anabolic and catabolic processes in the colorless sulfur bacterium Beggiatoa leptomitiformis D-402].
    Eprintsev AT; Falaleeva MI; Grabovich MIu; Parfenova NV; Kashirskaia NN; Dubinina GA
    Mikrobiologiia; 2004; 73(4):437-42. PubMed ID: 15521166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Isolation and purification of malate dehydrogenase isoforms from phototrophic purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris].
    Eprintsev AT; Klimova MA; Shikhalieva KD; Kompantseva EI
    Izv Akad Nauk Ser Biol; 2008; (6):680-7. PubMed ID: 19198073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dependence of the structure of malate dehydrogenase on the type of metabolism in fresh water filamentous colorless sulfur bacteria of the Beggiatoa species].
    Stepanova IIu; Eprintsev AT; Falaleeva MI; Parfenova NV; Grabovich MIu; Patritskaia VIu; Dubinina GA
    Mikrobiologiia; 2002; 71(4):445-51. PubMed ID: 12244711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Tricarboxylic acid cycle enzymes in various species of phototrophic bacteria].
    Krasil'nikova EN; Pedan LV; Firsov NN; Kondrat'eva EN
    Mikrobiologiia; 1973; 42(6):995-1000. PubMed ID: 4544539
    [No Abstract]   [Full Text] [Related]  

  • 7. [Structural-functional transformation of the malate dehydrogenase system of the bacterium Sphaerotilus sp. strain D-507 depending on nutritional mode].
    Eprintsev AT; Falaleeva MI; Arabtseva MA; Parfenova IV
    Izv Akad Nauk Ser Biol; 2009; (3):269-75. PubMed ID: 19548613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Features of structural organization and expression regulation of malate dehydrogenase isoforms from Rhodobacter sphaeroides strain 2R.
    Eprintsev AT; Klimova MA; Shikhalieva KD; Fedorin DN; Dzhaber MT; Kompantseva EI
    Biochemistry (Mosc); 2009 Jul; 74(7):793-9. PubMed ID: 19747101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insertion of transposon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes.
    Dymov SI; Meek DJ; Steven B; Driscoll BT
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1318-27. PubMed ID: 15597737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rate of carbon assimilation by Rhodopseudomonas palustris].
    Cherniad'ev II; Doman NG
    Mikrobiologiia; 1971; 40(3):381-5. PubMed ID: 4398101
    [No Abstract]   [Full Text] [Related]  

  • 11. Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach.
    Hu CW; Chang YL; Chen SJ; Kuo-Huang LL; Liao JC; Huang HC; Juan HF
    PLoS One; 2011; 6(12):e28329. PubMed ID: 22174789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of growth condition on enzymes of the citric acid cycle and the glyoxylate cycle in the photosynthetic bacterium Rhodopseudomonas palustris.
    Eley JH; Knobloch K; Han TW
    Antonie Van Leeuwenhoek; 1979; 45(4):521-9. PubMed ID: 552814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Growth in the dark and the NADH-oxidase activity of Rhodopseudomonas palustris].
    Rodova NA; Krasil'nikova EN
    Mikrobiologiia; 1974 Mar; 43(2):208-13. PubMed ID: 4151335
    [No Abstract]   [Full Text] [Related]  

  • 14. [Thiosulfate metabolism in Rhodopseudomonas palustris].
    Rodova NA; Pedan LV
    Mikrobiologiia; 1980; 49(2):221-6. PubMed ID: 6771496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligomeric forms of bacterial malate dehydrogenase: a study of the enzyme from the phototrophic non-sulfur bacterium Rhodovulum steppense A-20s.
    Eprintsev AT; Falaleeva MI; Lyashchenko MS; Toropygin IY; Igamberdiev AU
    Biosci Biotechnol Biochem; 2018 Jan; 82(1):81-89. PubMed ID: 29297253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Pathways of carbon utilization in photosynthesis of Rhodopseudomona palustris].
    Cherniad'ev II; Doman NG
    Biokhimiia; 1970; 35(5):968-72. PubMed ID: 5501675
    [No Abstract]   [Full Text] [Related]  

  • 17. Isolation and properties of malic enzyme and its gene in Rhodopseudomonas palustris No. 7.
    Sato I; Yoshikawa J; Furusawa A; Chiku K; Amachi S; Fujii T
    Biosci Biotechnol Biochem; 2010; 74(1):75-81. PubMed ID: 20057150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The enzyme of carbon metabolism in the thermotolerant sulfobacillus strain K1].
    Karavaĭko GI; Zakharchuk LM; Bogdanova TI; Egorova MA; Tsaplina IA; Krasil'nikova EN
    Mikrobiologiia; 2002; 71(6):755-61. PubMed ID: 12526195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The activity of the carbon metabolism enzymes in Chromatium minutissimum after long-term preservation].
    Krasil'nikova EN; Zakharchuk LM
    Mikrobiologiia; 2000; 69(3):328-33. PubMed ID: 10920800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.