These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 1852265)
1. Substituted piperazine and indole compounds increase extracellular serotonin in rat diencephalon as determined by in vivo microdialysis. Auerbach SB; Rutter JJ; Juliano PJ Neuropharmacology; 1991 Apr; 30(4):307-11. PubMed ID: 1852265 [TBL] [Abstract][Full Text] [Related]
2. TFMPP and RU24969 enhance serotonin release from rat hippocampus. Auerbach SB; Kamalakannan N; Rutter JJ Eur J Pharmacol; 1990 Nov; 190(1-2):51-7. PubMed ID: 2076760 [TBL] [Abstract][Full Text] [Related]
3. Intravenous administration of the serotonin agonist m-chlorophenylpiperazine (mCPP) increases extracellular serotonin in the diencephalon of awake rats. Baumann MH; Rutter JJ; Auerbach SB Neuropharmacology; 1993 Dec; 32(12):1381-6. PubMed ID: 8152528 [TBL] [Abstract][Full Text] [Related]
4. Facilitation of dopamine release in vivo by serotonin agonists: studies with microdialysis. Benloucif S; Galloway MP Eur J Pharmacol; 1991 Jul; 200(1):1-8. PubMed ID: 1769366 [TBL] [Abstract][Full Text] [Related]
5. Increase in extracellular serotonin produced by uptake inhibitors is enhanced after chronic treatment with fluoxetine. Rutter JJ; Gundlah C; Auerbach SB Neurosci Lett; 1994 Apr; 171(1-2):183-6. PubMed ID: 8084487 [TBL] [Abstract][Full Text] [Related]
6. Circadian variation in the activity of the 5-HT(1B) autoreceptor in the region of the suprachiasmatic nucleus, measured by microdialysis in the conscious freely-moving rat. Garabette ML; Martin KF; Redfern PH Br J Pharmacol; 2000 Dec; 131(8):1569-76. PubMed ID: 11139433 [TBL] [Abstract][Full Text] [Related]
7. Acute uptake inhibition increases extracellular serotonin in the rat forebrain. Rutter JJ; Auerbach SB J Pharmacol Exp Ther; 1993 Jun; 265(3):1319-24. PubMed ID: 7685386 [TBL] [Abstract][Full Text] [Related]
8. Effects of "Legal X" piperazine analogs on dopamine and serotonin release in rat brain. Baumann MH; Clark RD; Budzynski AG; Partilla JS; Blough BE; Rothman RB Ann N Y Acad Sci; 2004 Oct; 1025():189-97. PubMed ID: 15542717 [TBL] [Abstract][Full Text] [Related]
9. The role of the 5-HT1D receptor as a presynaptic autoreceptor in the guinea pig. Pullar IA; Boot JR; Broadmore RJ; Eyre TA; Cooper J; Sanger GJ; Wedley S; Mitchell SN Eur J Pharmacol; 2004 Jun; 493(1-3):85-93. PubMed ID: 15189767 [TBL] [Abstract][Full Text] [Related]
10. Differential effects of coadministration of fluoxetine and WAY-100635 on serotonergic neurotransmission in vivo: sensitivity to sequence of injections. Taber MT; Kinney GG; Pieschl RL; Yocca FD; Gribkoff VK Synapse; 2000 Oct; 38(1):17-26. PubMed ID: 10941137 [TBL] [Abstract][Full Text] [Related]
11. The putative 5-HT1A receptor antagonist DU125530 blocks the discriminative stimulus of the 5-HT1A receptor agonist flesinoxan in pigeons. Mos J; Van Hest A; Van Drimmelen M; Herremans AH; Olivier B Eur J Pharmacol; 1997 May; 325(2-3):145-53. PubMed ID: 9163561 [TBL] [Abstract][Full Text] [Related]
12. N-substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA, or 'Ecstasy'). Baumann MH; Clark RD; Budzynski AG; Partilla JS; Blough BE; Rothman RB Neuropsychopharmacology; 2005 Mar; 30(3):550-60. PubMed ID: 15496938 [TBL] [Abstract][Full Text] [Related]
13. Spinal supersensitivity to 5-HT1, 5-HT2 and 5-HT3 receptor agonists following 5,7-dihydroxytryptamine. Sawynok J; Reid A Eur J Pharmacol; 1994 Nov; 264(3):249-57. PubMed ID: 7698162 [TBL] [Abstract][Full Text] [Related]
14. 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Sharp T; Bramwell SR; Grahame-Smith DG Br J Pharmacol; 1989 Feb; 96(2):283-90. PubMed ID: 2466516 [TBL] [Abstract][Full Text] [Related]
15. Increased extracellular serotonin in rat brain after systemic or intraraphe administration of morphine. Tao R; Auerbach SB J Neurochem; 1994 Aug; 63(2):517-24. PubMed ID: 7518500 [TBL] [Abstract][Full Text] [Related]
16. Effect of 1-(m-chlorophenyl)piperazine and 1-(m-trifluoromethylphenyl)piperazine on locomotor activity. Lucki I; Ward HR; Frazer A J Pharmacol Exp Ther; 1989 Apr; 249(1):155-64. PubMed ID: 2709329 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological differentiation and characterization of 5-HT1A, 5-HT1B, and 5-HT1C binding sites in rat frontal cortex. Peroutka SJ J Neurochem; 1986 Aug; 47(2):529-40. PubMed ID: 2942638 [TBL] [Abstract][Full Text] [Related]
18. Possible 5-hydroxytryptamine1 (5-HT1) receptor involvement in the stimulus properties of 1-(m-trifluoromethylphenyl)piperazine (TFMPP). Cunningham KA; Appel JB J Pharmacol Exp Ther; 1986 May; 237(2):369-77. PubMed ID: 2939233 [TBL] [Abstract][Full Text] [Related]
19. The 5-HT1A receptor modulates the effects of cocaine on extracellular serotonin and dopamine levels in the nucleus accumbens. Andrews CM; Kung HF; Lucki I Eur J Pharmacol; 2005 Jan; 508(1-3):123-30. PubMed ID: 15680262 [TBL] [Abstract][Full Text] [Related]
20. A comparison of the effects of the 5-HT1 agonists TFMPP and RU 24969 on feeding following peripheral or medial hypothalamic injection. Fletcher PJ; Ming ZH; Zack MH; Coscina DV Brain Res; 1992 May; 580(1-2):265-72. PubMed ID: 1387034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]