These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 18522652)

  • 1. Patterns of water, heat, and solute flux through streambeds around small dams.
    Fanelli RM; Lautz LK
    Ground Water; 2008; 46(5):671-87. PubMed ID: 18522652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using heat to characterize streambed water flux variability in four stream reaches.
    Essaid HI; Zamora CM; McCarthy KA; Vogel JR; Wilson JT
    J Environ Qual; 2008; 37(3):1010-23. PubMed ID: 18453424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat, chloride, and specific conductance as ground water tracers near streams.
    Cox MH; Su GW; Constantz J
    Ground Water; 2007; 45(2):187-95. PubMed ID: 17335483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-stream response to nitrate loading in three streams draining agricultural landscapes.
    Duff JH; Tesoriero AJ; Richardson WB; Strauss EA; Munn MD
    J Environ Qual; 2008; 37(3):1133-44. PubMed ID: 18453433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat as a ground water tracer.
    Anderson MP
    Ground Water; 2005; 43(6):951-68. PubMed ID: 16324018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and fate of nitrate at the ground-water/surface-water interface.
    Puckett LJ; Zamora C; Essaid H; Wilson JT; Johnson HM; Brayton MJ; Vogel JR
    J Environ Qual; 2008; 37(3):1034-50. PubMed ID: 18453426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability and comparison of hyporheic water temperatures and seepage fluxes in a small Atlantic salmon stream.
    Alexander MD; Caissie D
    Ground Water; 2003; 41(1):72-82. PubMed ID: 12533078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral and longitudinal variation of hyporheic exchange in a piedmont stream pool.
    Ryan RJ; Boufadel MC
    Environ Sci Technol; 2007 Jun; 41(12):4221-6. PubMed ID: 17626416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon biogeochemistry of ground water, Guiyang, southwest China.
    Li SL; Liu CQ; Tao FX; Lang YC; Han GL
    Ground Water; 2005; 43(4):494-9. PubMed ID: 16029175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and fate of nitrate and pesticides: hydrogeology and riparian zone processes.
    Puckett LJ; Hughes WB
    J Environ Qual; 2005; 34(6):2278-92. PubMed ID: 16275729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium biogeochemical cycling and fluxes in the hyporheic zone of a mining-impacted stream.
    Oram LL; Strawn DG; Morra MJ; Möller G
    Environ Sci Technol; 2010 Jun; 44(11):4176-83. PubMed ID: 20443593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity and thermal modeling of ground water.
    Ferguson G
    Ground Water; 2007; 45(4):485-90. PubMed ID: 17600579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of fluid, heat transport to estimate desert stream infiltration.
    Kulongoski JT; Izbicki JA
    Ground Water; 2008; 46(3):462-74. PubMed ID: 18194325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stream bottom resistivity tomography to map ground water discharge.
    Nyquist JE; Freyer PA; Toran L
    Ground Water; 2008; 46(4):561-9. PubMed ID: 18373670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate retention in riparian ground water at natural and elevated nitrate levels in north central Minnesota.
    Duff JH; Jackman AP; Triska FJ; Sheibley RW; Avanzino RJ
    J Environ Qual; 2007; 36(2):343-53. PubMed ID: 17255621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delineating and quantifying ground water discharge zones using streambed temperatures.
    Conant B
    Ground Water; 2004; 42(2):243-57. PubMed ID: 15035588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of oscillating flow on hyporheic zone development.
    Maier HS; Howard KW
    Ground Water; 2011; 49(6):830-44. PubMed ID: 21309768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures.
    Kalbus E; Schmidt C; Bayer-Raich M; Leschik S; Reinstorf F; Balcke GU; Schirmer M
    Environ Pollut; 2007 Aug; 148(3):808-16. PubMed ID: 17399875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streambed microbial communities in the transition zone between groundwater and a first-order stream as impacted by bidirectional water exchange.
    Wang Z; Jimenez-Fernandez O; Osenbrück K; Schwientek M; Schloter M; Fleckenstein JH; Lueders T
    Water Res; 2022 Jun; 217():118334. PubMed ID: 35397370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of rapidly changing river stage on uranium flux through the hyporheic zone.
    Fritz BG; Arntzen EV
    Ground Water; 2007; 45(6):753-60. PubMed ID: 17973753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.