These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 18522724)
21. Formate-driven growth coupled with H(2) production. Kim YJ; Lee HS; Kim ES; Bae SS; Lim JK; Matsumi R; Lebedinsky AV; Sokolova TG; Kozhevnikova DA; Cha SS; Kim SJ; Kwon KK; Imanaka T; Atomi H; Bonch-Osmolovskaya EA; Lee JH; Kang SG Nature; 2010 Sep; 467(7313):352-5. PubMed ID: 20844539 [TBL] [Abstract][Full Text] [Related]
22. Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Tersteegen A; Hedderich R Eur J Biochem; 1999 Sep; 264(3):930-43. PubMed ID: 10491142 [TBL] [Abstract][Full Text] [Related]
23. Effects of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase. Ma K; Loessner H; Heider J; Johnson MK; Adams MW J Bacteriol; 1995 Aug; 177(16):4748-56. PubMed ID: 7642502 [TBL] [Abstract][Full Text] [Related]
24. NADP Yang J-i; Jung H-C; Oh H-M; Choi BG; Lee HS; Kang SG Appl Environ Microbiol; 2023 Dec; 89(12):e0147423. PubMed ID: 37966269 [TBL] [Abstract][Full Text] [Related]
25. The plant pathogen Pectobacterium atrosepticum contains a functional formate hydrogenlyase-2 complex. Finney AJ; Lowden R; Fleszar M; Albareda M; Coulthurst SJ; Sargent F Mol Microbiol; 2019 Nov; 112(5):1440-1452. PubMed ID: 31420965 [TBL] [Abstract][Full Text] [Related]
26. Activation of formate hydrogen-lyase via expression of uptake [NiFe]-hydrogenase in Escherichia coli BL21(DE3). Jo BH; Cha HJ Microb Cell Fact; 2015 Sep; 14():151. PubMed ID: 26395073 [TBL] [Abstract][Full Text] [Related]
27. Differential effects of isc operon mutations on the biosynthesis and activity of key anaerobic metalloenzymes in Escherichia coli. Jaroschinsky M; Pinske C; Gary Sawers R Microbiology (Reading); 2017 Jun; 163(6):878-890. PubMed ID: 28640740 [TBL] [Abstract][Full Text] [Related]
28. Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic archaeon Thermococcus kodakarensis. Kanai T; Matsuoka R; Beppu H; Nakajima A; Okada Y; Atomi H; Imanaka T J Bacteriol; 2011 Jun; 193(12):3109-16. PubMed ID: 21515783 [TBL] [Abstract][Full Text] [Related]
30. Suppression of Escherichia coli formate hydrogenlyase activity by trimethylamine N-oxide is due to drainage of the inducer formate. Abaibou H; Giordano G; Mandrand-Berthelot MA Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2657-2664. PubMed ID: 9274019 [TBL] [Abstract][Full Text] [Related]
31. Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A- dependent NAD(P)H sulfur oxidoreductase. Schut GJ; Bridger SL; Adams MW J Bacteriol; 2007 Jun; 189(12):4431-41. PubMed ID: 17449625 [TBL] [Abstract][Full Text] [Related]
32. Reconstitution and properties of a coenzyme F420-mediated formate hydrogenlyase system in Methanobacterium formicicum. Baron SF; Ferry JG J Bacteriol; 1989 Jul; 171(7):3854-9. PubMed ID: 2661536 [TBL] [Abstract][Full Text] [Related]
33. Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. Adams MW; Holden JF; Menon AL; Schut GJ; Grunden AM; Hou C; Hutchins AM; Jenney FE; Kim C; Ma K; Pan G; Roy R; Sapra R; Story SV; Verhagen MF J Bacteriol; 2001 Jan; 183(2):716-24. PubMed ID: 11133967 [TBL] [Abstract][Full Text] [Related]
34. The dual-function chaperone HycH improves assembly of the formate hydrogenlyase complex. Lindenstrauß U; Skorupa P; McDowall JS; Sargent F; Pinske C Biochem J; 2017 Aug; 474(17):2937-2950. PubMed ID: 28718449 [TBL] [Abstract][Full Text] [Related]
35. The N-terminal domains of the paralogous HycE and NuoCD govern assembly of the respective formate hydrogenlyase and NADH dehydrogenase complexes. Skorupa P; Lindenstrauß U; Burschel S; Blumenscheit C; Friedrich T; Pinske C FEBS Open Bio; 2020 Mar; 10(3):371-385. PubMed ID: 31925988 [TBL] [Abstract][Full Text] [Related]
36. Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Sapra R; Verhagen MF; Adams MW J Bacteriol; 2000 Jun; 182(12):3423-8. PubMed ID: 10852873 [TBL] [Abstract][Full Text] [Related]
37. Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Fukuda W; Ismail YS; Fukui T; Atomi H; Imanaka T Archaea; 2005 May; 1(5):293-301. PubMed ID: 15876562 [TBL] [Abstract][Full Text] [Related]
38. Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1. Moon YJ; Kwon J; Yun SH; Lim HL; Kim J; Kim SJ; Kang SG; Lee JH; Kim SI; Chung YH Int J Mol Sci; 2015 Apr; 16(5):9167-95. PubMed ID: 25915030 [TBL] [Abstract][Full Text] [Related]
39. Identification of a novel class of membrane-bound [NiFe]-hydrogenases in Thermococcus onnurineus NA1 by in silico analysis. Lim JK; Kang SG; Lebedinsky AV; Lee JH; Lee HS Appl Environ Microbiol; 2010 Sep; 76(18):6286-9. PubMed ID: 20656864 [TBL] [Abstract][Full Text] [Related]
40. Screening of a novel strong promoter by RNA sequencing and its application to H2 production in a hyperthermophilic archaeon. Lee SH; Kim MS; Jung HC; Lee J; Lee JH; Lee HS; Kang SG Appl Microbiol Biotechnol; 2015 May; 99(9):4085-92. PubMed ID: 25690310 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]