These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18522909)

  • 21. Population density affects sex ratio variation in red deer.
    Kruuk LE; Clutton-Brock TH; Albon SD; Pemberton JM; Guinness FE
    Nature; 1999 Jun; 399(6735):459-61. PubMed ID: 10365956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subspecies and body size allometry affect milk production and composition, and calf growth in red deer: comparison of Cervus elaphus hispanicus and Cervus elaphus scoticus.
    Landete-Castillejos T; García A; Gómez JA; Molina A; Gallego L
    Physiol Biochem Zool; 2003; 76(4):594-602. PubMed ID: 13130438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of maternal age and offspring sex on milk yield, composition and calf growth of red deer (Cervus elaphus).
    Pérez-Barbería FJ; García AJ; Brewer MJ; Cappelli J; Serrano MP; Gallego L; Landete-Castillejos T
    Sci Rep; 2022 Aug; 12(1):14506. PubMed ID: 36008507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maternal effects do not resolve the paradox of stasis in birth weight in a wild red deer populaton.
    Gauzere J; Pemberton JM; Kruuk LEB; Morris A; Morris S; Walling CA
    Evolution; 2022 Nov; 76(11):2605-2617. PubMed ID: 36111977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inbreeding depression in red deer calves.
    Walling CA; Nussey DH; Morris A; Clutton-Brock TH; Kruuk LE; Pemberton JM
    BMC Evol Biol; 2011 Oct; 11():318. PubMed ID: 22039837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The genetic architecture of maternal effects across ontogeny in the red deer.
    Gauzere J; Pemberton JM; Morris S; Morris A; Kruuk LEB; Walling CA
    Evolution; 2020 Jul; 74(7):1378-1391. PubMed ID: 32462712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Social rank, feeding and winter weight loss in red deer: any evidence of interference competition?
    Veiberg V; Loe LE; Mysterud A; Langvatn R; Stenseth NC
    Oecologia; 2004 Jan; 138(1):135-42. PubMed ID: 14564502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contrasting the Effects of Maternal and Behavioral Characteristics on Fawn Birth Mass in White-Tailed Deer.
    Michel ES; Demarais S; Strickland BK; Belant JL
    PLoS One; 2015; 10(8):e0136034. PubMed ID: 26288141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring individual quality in a wild population of red deer.
    Moyes K; Morgan BJ; Morris A; Morris SJ; Clutton-Brock TH; Coulson T
    J Anim Ecol; 2009 Mar; 78(2):406-13. PubMed ID: 19021783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapidly declining fine-scale spatial genetic structure in female red deer.
    Nussey DH; Coltman DW; Coulson T; Kruuk LE; Donald A; Morris SJ; Clutton-Brock TH; Pemberton J
    Mol Ecol; 2005 Oct; 14(11):3395-405. PubMed ID: 16156811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Age-related body weight constraints on prenatal and milk provisioning in Iberian red deer (Cervus elaphus hispanicus) affect allocation of maternal resources.
    Landete-Castillejos T; García A; Carrión D; Estevez JA; Ceacero F; Gaspar-López E; Gallego L
    Theriogenology; 2009 Feb; 71(3):400-7. PubMed ID: 18804854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The importance of parasite life history and host density in predicting the impact of infections in red deer.
    Vicente J; Höfle U; Fernández-De-Mera IG; Gortazar C
    Oecologia; 2007 Jul; 152(4):655-64. PubMed ID: 17401583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Indirect genetics effects and evolutionary constraint: an analysis of social dominance in red deer, Cervus elaphus.
    Wilson AJ; Morrissey MB; Adams MJ; Walling CA; Guinness FE; Pemberton JM; Clutton-Brock TH; Kruuk LE
    J Evol Biol; 2011 Apr; 24(4):772-83. PubMed ID: 21288272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sex differences in emigration and mortality affect optimal management of deer populations.
    Clutton-Brock TH; Coulson TN; Milner-Gulland EJ; Thomson D; Armstrong HM
    Nature; 2002 Feb; 415(6872):633-7. PubMed ID: 11832944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-level parasitic worm burdens may reduce body condition in free-ranging red deer (Cervus elaphus).
    Irvine RJ; Corbishley H; Pilkington JG; Albon SD
    Parasitology; 2006 Oct; 133(Pt 4):465-75. PubMed ID: 16817998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The reproductive performance of wild Scottish red deer, Cervus elaphus.
    Mitchell B
    J Reprod Fertil Suppl; 1973 Dec; 19():271-85. PubMed ID: 4522380
    [No Abstract]   [Full Text] [Related]  

  • 37. Behavioral dominance and corpus luteum function in red deer Cervus elaphus.
    Flint AP; Albon SD; Loudon AS; Jabbour HN
    Horm Behav; 1997 Jun; 31(3):296-304. PubMed ID: 9213143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased effect of harsh climate in red deer with a poor set of teeth.
    Loe LE; Bonenfant C; Langvatn R; Mysterud A; Veiberg V; Stenseth NC
    Oecologia; 2006 Feb; 147(1):24-30. PubMed ID: 16341894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disentangling demographic effects of red deer on chamois population dynamics.
    Donini V; Pedrotti L; Ferretti F; Corlatti L
    Ecol Evol; 2021 Jun; 11(12):8264-8280. PubMed ID: 34188885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The reproductive cycle of the female red deer, Cervus elaphus L.
    Guinness F; Lincoln GA; Short RV
    J Reprod Fertil; 1971 Dec; 27(3):427-38. PubMed ID: 5167355
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.