These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 18522922)

  • 1. Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes.
    Burki F; Shalchian-Tabrizi K; Pawlowski J
    Biol Lett; 2008 Aug; 4(4):366-9. PubMed ID: 18522922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes.
    Harper JT; Waanders E; Keeling PJ
    Int J Syst Evol Microbiol; 2005 Jan; 55(Pt 1):487-496. PubMed ID: 15653923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups".
    Hampl V; Hug L; Leigh JW; Dacks JB; Lang BF; Simpson AG; Roger AJ
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3859-64. PubMed ID: 19237557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates.
    Hackett JD; Yoon HS; Li S; Reyes-Prieto A; Rümmele SE; Bhattacharya D
    Mol Biol Evol; 2007 Aug; 24(8):1702-13. PubMed ID: 17488740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenomics reshuffles the eukaryotic supergroups.
    Burki F; Shalchian-Tabrizi K; Minge M; Skjaeveland A; Nikolaev SI; Jakobsen KS; Pawlowski J
    PLoS One; 2007 Aug; 2(8):e790. PubMed ID: 17726520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.
    Cavalier-Smith T
    Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):297-354. PubMed ID: 11931142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates.
    Burki F; Inagaki Y; Bråte J; Archibald JM; Keeling PJ; Cavalier-Smith T; Sakaguchi M; Hashimoto T; Horak A; Kumar S; Klaveness D; Jakobsen KS; Pawlowski J; Shalchian-Tabrizi K
    Genome Biol Evol; 2009 Jul; 1():231-8. PubMed ID: 20333193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular timeline for the origin of photosynthetic eukaryotes.
    Yoon HS; Hackett JD; Ciniglia C; Pinto G; Bhattacharya D
    Mol Biol Evol; 2004 May; 21(5):809-18. PubMed ID: 14963099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary position of breviate amoebae and the primary eukaryote divergence.
    Minge MA; Silberman JD; Orr RJ; Cavalier-Smith T; Shalchian-Tabrizi K; Burki F; Skjaeveland A; Jakobsen KS
    Proc Biol Sci; 2009 Feb; 276(1657):597-604. PubMed ID: 19004754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromalveolates and the evolution of plastids by secondary endosymbiosis.
    Keeling PJ
    J Eukaryot Microbiol; 2009; 56(1):1-8. PubMed ID: 19335769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PHYLOGENOMICS AND SECONDARY PLASTIDS: A LOOK BACK AND A LOOK AHEAD(1).
    Braun EL; Phillips N
    J Phycol; 2008 Feb; 44(1):2-6. PubMed ID: 27041031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes.
    Becker B; Hoef-Emden K; Melkonian M
    BMC Evol Biol; 2008 Jul; 8():203. PubMed ID: 18627593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadly sampled multigene trees of eukaryotes.
    Yoon HS; Grant J; Tekle YI; Wu M; Chaon BC; Cole JC; Logsdon JM; Patterson DJ; Bhattacharya D; Katz LA
    BMC Evol Biol; 2008 Jan; 8():14. PubMed ID: 18205932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The New Tree of Eukaryotes.
    Burki F; Roger AJ; Brown MW; Simpson AGB
    Trends Ecol Evol; 2020 Jan; 35(1):43-55. PubMed ID: 31606140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity and evolutionary history of plastids and their hosts.
    Keeling PJ
    Am J Bot; 2004 Oct; 91(10):1481-93. PubMed ID: 21652304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids.
    Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM
    BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes.
    Rodríguez-Ezpeleta N; Brinkmann H; Burey SC; Roure B; Burger G; Löffelhardt W; Bohnert HJ; Philippe H; Lang BF
    Curr Biol; 2005 Jul; 15(14):1325-30. PubMed ID: 16051178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Insights into Plastid Evolution.
    Sibbald SJ; Archibald JM
    Genome Biol Evol; 2020 Jul; 12(7):978-990. PubMed ID: 32402068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The eukaryotic tree of life: endosymbiosis takes its TOL.
    Lane CE; Archibald JM
    Trends Ecol Evol; 2008 May; 23(5):268-75. PubMed ID: 18378040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of next-generation sequencing to unravelling the evolutionary history of algae.
    Kim KM; Park JH; Bhattacharya D; Yoon HS
    Int J Syst Evol Microbiol; 2014 Feb; 64(Pt 2):333-345. PubMed ID: 24505071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.