BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18522945)

  • 1. Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components.
    Genest O; Neumann M; Seduk F; Stöcklein W; Méjean V; Leimkühler S; Iobbi-Nivol C
    J Biol Chem; 2008 Aug; 283(31):21433-40. PubMed ID: 18522945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli.
    Reschke S; Sigfridsson KG; Kaufmann P; Leidel N; Horn S; Gast K; Schulzke C; Haumann M; Leimkühler S
    J Biol Chem; 2013 Oct; 288(41):29736-45. PubMed ID: 24003231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA.
    Ilbert M; Méjean V; Giudici-Orticoni MT; Samama JP; Iobbi-Nivol C
    J Biol Chem; 2003 Aug; 278(31):28787-92. PubMed ID: 12766163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation.
    Genest O; Seduk F; Théraulaz L; Méjean V; Iobbi-Nivol C
    FEMS Microbiol Lett; 2006 Dec; 265(1):51-5. PubMed ID: 17107419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins.
    Ilbert M; Méjean V; Iobbi-Nivol C
    Microbiology (Reading); 2004 Apr; 150(Pt 4):935-943. PubMed ID: 15073303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature.
    Genest O; Ilbert M; Méjean V; Iobbi-Nivol C
    J Biol Chem; 2005 Apr; 280(16):15644-8. PubMed ID: 15723832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N-Oxide Reductase.
    Kaufmann P; Duffus BR; Mitrova B; Iobbi-Nivol C; Teutloff C; Nimtz M; Jänsch L; Wollenberger U; Leimkühler S
    Biochemistry; 2018 Feb; 57(7):1130-1143. PubMed ID: 29334455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes.
    Genest O; Méjean V; Iobbi-Nivol C
    FEMS Microbiol Lett; 2009 Aug; 297(1):1-9. PubMed ID: 19519768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quality control of a molybdoenzyme by the Lon protease.
    Redelberger D; Genest O; Arabet D; Méjean V; Ilbert M; Iobbi-Nivol C
    FEBS Lett; 2013 Dec; 587(24):3935-42. PubMed ID: 24211448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli.
    Pommier J; Méjean V; Giordano G; Iobbi-Nivol C
    J Biol Chem; 1998 Jun; 273(26):16615-20. PubMed ID: 9632735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial molybdoenzymes: old enzymes for new purposes.
    Leimkühler S; Iobbi-Nivol C
    FEMS Microbiol Rev; 2016 Jan; 40(1):1-18. PubMed ID: 26468212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaperones in maturation of molybdoenzymes: Why specific is better than general?
    Lemaire ON; Bouillet S; Méjean V; Iobbi-Nivol C; Genest O
    Bioengineered; 2017 Mar; 8(2):133-136. PubMed ID: 27580420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal peptide protection by specific chaperone.
    Genest O; Seduk F; Ilbert M; Méjean V; Iobbi-Nivol C
    Biochem Biophys Res Commun; 2006 Jan; 339(3):991-5. PubMed ID: 16337610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis.
    Li H; Chang L; Howell JM; Turner RJ
    Biochim Biophys Acta; 2010 Jun; 1804(6):1301-9. PubMed ID: 20153451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis.
    Leimkühler S; Angermüller S; Schwarz G; Mendel RR; Klipp W
    J Bacteriol; 1999 Oct; 181(19):5930-9. PubMed ID: 10498704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of the molybdenum cofactor synthesized by Rhodobacter capsulatus MoeA to XdhC and MobA.
    Neumann M; Stöcklein W; Leimkühler S
    J Biol Chem; 2007 Sep; 282(39):28493-28500. PubMed ID: 17686778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone.
    Buchanan G; Maillard J; Nabuurs SB; Richardson DJ; Palmer T; Sargent F
    FEBS Lett; 2008 Dec; 582(29):3979-84. PubMed ID: 19013157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria.
    Yokoyama K; Leimkühler S
    Biochim Biophys Acta; 2015 Jun; 1853(6):1335-49. PubMed ID: 25268953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic GTPase activity of a bacterial twin-arginine translocation proofreading chaperone induced by domain swapping.
    Guymer D; Maillard J; Agacan MF; Brearley CA; Sargent F
    FEBS J; 2010 Jan; 277(2):511-25. PubMed ID: 20064164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NarJ chaperone binds on two distinct sites of the aponitrate reductase of Escherichia coli to coordinate molybdenum cofactor insertion and assembly.
    Vergnes A; Pommier J; Toci R; Blasco F; Giordano G; Magalon A
    J Biol Chem; 2006 Jan; 281(4):2170-6. PubMed ID: 16286471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.