BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18522945)

  • 21. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli.
    Iobbi-Nivol C; Leimkühler S
    Biochim Biophys Acta; 2013; 1827(8-9):1086-101. PubMed ID: 23201473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a pre-export enzyme-chaperone complex on the twin-arginine transport pathway.
    Dow JM; Gabel F; Sargent F; Palmer T
    Biochem J; 2013 May; 452(1):57-66. PubMed ID: 23452237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The biosynthesis of the molybdenum cofactors in Escherichia coli.
    Leimkühler S
    Environ Microbiol; 2020 Jun; 22(6):2007-2026. PubMed ID: 32239579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and multiple molecular forms of TorD from Shewanella massilia, the putative chaperone of the molybdoenzyme TorA.
    Tranier S; Mortier-Barrière I; Ilbert M; Birck C; Iobbi-Nivol C; Méjean V; Samama JP
    Protein Sci; 2002 Sep; 11(9):2148-57. PubMed ID: 12192070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The chaperone FdsC for Rhodobacter capsulatus formate dehydrogenase binds the bis-molybdopterin guanine dinucleotide cofactor.
    Böhmer N; Hartmann T; Leimkühler S
    FEBS Lett; 2014 Feb; 588(4):531-7. PubMed ID: 24444607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical, stabilization and crystallization studies on a molecular chaperone (PaoD) involved in the maturation of molybdoenzymes.
    Otrelo-Cardoso AR; Schwuchow V; Rodrigues D; Cabrita EJ; Leimkühler S; Romão MJ; Santos-Silva T
    PLoS One; 2014; 9(1):e87295. PubMed ID: 24498065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into the role of Escherichia coli MobB in molybdenum cofactor biosynthesis based on the high resolution crystal structure.
    McLuskey K; Harrison JA; Schuttelkopf AW; Boxer DH; Hunter WN
    J Biol Chem; 2003 Jun; 278(26):23706-13. PubMed ID: 12682065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molybdoenzymes and molybdenum cofactor in plants.
    Mendel RR; Hänsch R
    J Exp Bot; 2002 Aug; 53(375):1689-98. PubMed ID: 12147719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli.
    Reschke S; Duffus BR; Schrapers P; Mebs S; Teutloff C; Dau H; Haumann M; Leimkühler S
    Biochemistry; 2019 Apr; 58(17):2228-2242. PubMed ID: 30945846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes.
    Tiedemann K; Iobbi-Nivol C; Leimkühler S
    Molecules; 2022 May; 27(9):. PubMed ID: 35566344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Escherichia coli MoeA and MogA. Function in metal incorporation step of molybdenum cofactor biosynthesis.
    Nichols J; Rajagopalan KV
    J Biol Chem; 2002 Jul; 277(28):24995-5000. PubMed ID: 12006571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molybdenum cofactor biosynthesis in Escherichia coli. Requirement of the chlB gene product for the formation of molybdopterin guanine dinucleotide.
    Johnson JL; Indermaur LW; Rajagopalan KV
    J Biol Chem; 1991 Jul; 266(19):12140-5. PubMed ID: 1648082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Framework for Metal Incorporation during Molybdenum Cofactor Biosynthesis.
    Kasaragod VB; Schindelin H
    Structure; 2016 May; 24(5):782-788. PubMed ID: 27112598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution.
    Stevenson CE; Sargent F; Buchanan G; Palmer T; Lawson DM
    Structure; 2000 Nov; 8(11):1115-25. PubMed ID: 11080634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli.
    Blasco F; Dos Santos JP; Magalon A; Frixon C; Guigliarelli B; Santini CL; Giordano G
    Mol Microbiol; 1998 May; 28(3):435-47. PubMed ID: 9632249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization.
    Niedzialkowska E; Mrugała B; Rugor A; Czub MP; Skotnicka A; Cotelesage JJH; George GN; Szaleniec M; Minor W; Lewiński K
    Protein Expr Purif; 2017 Jun; 134():47-62. PubMed ID: 28343996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor.
    Leimkühler S; Klipp W
    FEMS Microbiol Lett; 1999 May; 174(2):239-46. PubMed ID: 10339814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The molybdenum cofactor.
    Mendel RR
    J Biol Chem; 2013 May; 288(19):13165-72. PubMed ID: 23539623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function.
    Kozmin SG; Schaaper RM
    Mutat Res; 2007 Jun; 619(1-2):9-15. PubMed ID: 17349664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase.
    Hawkes TR; Bray RC
    Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.