These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 18523347)

  • 1. Investigations on laser hard tissue ablation under various environments.
    Kang HW; Oh J; Welch AJ
    Phys Med Biol; 2008 Jun; 53(12):3381-90. PubMed ID: 18523347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hard tissue ablation with a spray-assisted mid-IR laser.
    Kang HW; Rizoiu I; Welch AJ
    Phys Med Biol; 2007 Dec; 52(24):7243-59. PubMed ID: 18065837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The efficiency of bone ablation with an Nd:YAG laser beam delivered with a cooling spray: an in vitro study.
    Rizoiu IM; Levy GC
    Compendium; 1994 Jan; 15(1):106, 108, 110-1; quiz 112. PubMed ID: 8187144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 microm, 2.79 microm, and 0.355 microm laser pulses.
    Dela Rosa A; Sarma AV; Le CQ; Jones RS; Fried D
    Lasers Surg Med; 2004; 35(3):214-28. PubMed ID: 15389737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm.
    Youn JI; Sweet P; Peavy GM
    Lasers Surg Med; 2007 Apr; 39(4):332-40. PubMed ID: 17457836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology.
    Youn JI; Sweet P; Peavy GM; Venugopalan V
    Lasers Surg Med; 2006 Mar; 38(3):218-28. PubMed ID: 16453331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques.
    Stübinger S; von Rechenberg vB; Zeilhofer HF; Sader R; Landes C
    Lasers Surg Med; 2007 Aug; 39(7):583-8. PubMed ID: 17868108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time guidance of thermal and ultrashort pulsed laser ablation in hard tissue using inline coherent imaging.
    Leung BY; Webster PJ; Fraser JM; Yang VX
    Lasers Surg Med; 2012 Mar; 44(3):249-56. PubMed ID: 22241665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective laser ablation of bone based on the absorption characteristics of water and proteins.
    Spencer P; Payne JM; Cobb CM; Reinisch L; Peavy GM; Drummer DD; Suchman DL; Swafford JR
    J Periodontol; 1999 Jan; 70(1):68-74. PubMed ID: 10052773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Retinal photoablation with the Erbium:YAG laser. Initial experimental results for traction-free removal of tissue].
    Hoerauf H; Brix A; Scholz C; Winkler J; Dröge G; Birngruber R; Vogel A; Laqua H
    Ophthalmologe; 2003 Feb; 100(2):115-21. PubMed ID: 12589455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Er:YAG and 9.6-microm TE CO(2) lasers for ablation of skull tissue.
    Fried NM; Fried D
    Lasers Surg Med; 2001; 28(4):335-43. PubMed ID: 11344514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoablation of gelatin with the free-electron laser between 2.7 and 6.7 microns.
    Jean B; Bende T
    J Refract Corneal Surg; 1994; 10(4):433-8. PubMed ID: 7528615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XeCl excimer laser ablation of rabbit tibia bone: morphology of the irradiated site and self-limiting effect.
    Obara T; Munin E; Libert EA; Pompeu E; Pacheco MT
    Photomed Laser Surg; 2005 Dec; 23(6):561-6. PubMed ID: 16356147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free electron laser ablation of articular and fibro-cartilage at 2.79, 2.9, 6.1, and 6.45 microm: mass removal studies.
    Youn JI; Peavy GM; Venugopalan V
    Lasers Surg Med; 2005 Mar; 36(3):202-9. PubMed ID: 15704094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of water environment on holmium laser ablation performance for hard tissues.
    Lü T; Xiao Q; Li Z
    Appl Opt; 2012 May; 51(13):2505-14. PubMed ID: 22614434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone tissue ablation with sub-microS pulses of a Q-switch CO(2) laser: histological examination of thermal side effects.
    Ivanenko MM; Fahimi-Weber S; Mitra T; Wierich W; Hering P
    Lasers Med Sci; 2002; 17(4):258-64. PubMed ID: 12417980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold and ablation efficiency studies of microsecond ablation of gelatin under water.
    Sathyam US; Shearin A; Chasteney EA; Prahl SA
    Lasers Surg Med; 1996; 19(4):397-406. PubMed ID: 8982998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Er:YAG laser osteotomy: preliminary clinical and histological results of a new technique for contact-free bone surgery.
    Stübinger S; Ghanaati S; Saldamli B; Kirkpatrick CJ; Sader R
    Eur Surg Res; 2009; 42(3):150-6. PubMed ID: 19176967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erbium: YAG laser ablation of retinal tissue under perfluorodecaline: determination of laser-tissue interaction in pig eyes.
    Wesendahl T; Janknecht P; Ott B; Frenz M
    Invest Ophthalmol Vis Sci; 2000 Feb; 41(2):505-12. PubMed ID: 10670482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.