BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 18523684)

  • 1. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis.
    Soanes DM; Alam I; Cornell M; Wong HM; Hedeler C; Paton NW; Rattray M; Hubbard SJ; Oliver SG; Talbot NJ
    PLoS One; 2008 Jun; 3(6):e2300. PubMed ID: 18523684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cause and Effectors: Whole-Genome Comparisons Reveal Shared but Rapidly Evolving Effector Sets among Host-Specific Plant-Castrating Fungi.
    Beckerson WC; Rodríguez de la Vega RC; Hartmann FE; Duhamel M; Giraud T; Perlin MH
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genome analysis across a kingdom of eukaryotic organisms: specialization and diversification in the fungi.
    Cornell MJ; Alam I; Soanes DM; Wong HM; Hedeler C; Paton NW; Rattray M; Hubbard SJ; Talbot NJ; Oliver SG
    Genome Res; 2007 Dec; 17(12):1809-22. PubMed ID: 17984228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi.
    Meerupati T; Andersson KM; Friman E; Kumar D; Tunlid A; Ahrén D
    PLoS Genet; 2013 Nov; 9(11):e1003909. PubMed ID: 24244185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and Oomycetes.
    Choi J; Kim KT; Jeon J; Lee YH
    BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S7. PubMed ID: 24564786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The two-speed genomes of filamentous pathogens: waltz with plants.
    Dong S; Raffaele S; Kamoun S
    Curr Opin Genet Dev; 2015 Dec; 35():57-65. PubMed ID: 26451981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.
    Saunders DG; Win J; Cano LM; Szabo LJ; Kamoun S; Raffaele S
    PLoS One; 2012; 7(1):e29847. PubMed ID: 22238666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the secretomes of endophytic and nonendophytic fungi reveals similarities in host plant infection and colonization strategies.
    Queiroz CB; Santana MF
    Mycologia; 2020; 112(3):491-503. PubMed ID: 32286912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome evolution in filamentous plant pathogens: why bigger can be better.
    Raffaele S; Kamoun S
    Nat Rev Microbiol; 2012 May; 10(6):417-30. PubMed ID: 22565130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes.
    Moktali V; Park J; Fedorova-Abrams ND; Park B; Choi J; Lee YH; Kang S
    BMC Genomics; 2012 Oct; 13():525. PubMed ID: 23033934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomic analysis of phytopathogenic fungi using expressed sequence tag (EST) collections.
    Soanes DM; Talbot NJ
    Mol Plant Pathol; 2006 Jan; 7(1):61-70. PubMed ID: 20507428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity.
    Franceschetti M; Maqbool A; Jiménez-Dalmaroni MJ; Pennington HG; Kamoun S; Banfield MJ
    Microbiol Mol Biol Rev; 2017 Jun; 81(2):. PubMed ID: 28356329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome plasticity in filamentous plant pathogens contributes to the emergence of novel effectors and their cellular processes in the host.
    Dong Y; Li Y; Qi Z; Zheng X; Zhang Z
    Curr Genet; 2016 Feb; 62(1):47-51. PubMed ID: 26228744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2014 Jan; 15():6. PubMed ID: 24422981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Fungal Secondary Metabolites and Their Role in Plant Pathogenesis.
    Tannous J; Labbé J; Keller NP
    Methods Mol Biol; 2023; 2659():193-218. PubMed ID: 37249895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of programmed cell death pathways in filamentous fungi.
    Fedorova ND; Badger JH; Robson GD; Wortman JR; Nierman WC
    BMC Genomics; 2005 Dec; 6():177. PubMed ID: 16336669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi.
    Egan MJ; Talbot NJ
    Curr Opin Plant Biol; 2008 Aug; 11(4):367-72. PubMed ID: 18614392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens.
    Sánchez-Vallet A; Fouché S; Fudal I; Hartmann FE; Soyer JL; Tellier A; Croll D
    Annu Rev Phytopathol; 2018 Aug; 56():21-40. PubMed ID: 29768136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2013 Apr; 14():274. PubMed ID: 23617724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms.
    Richards TA; Dacks JB; Jenkinson JM; Thornton CR; Talbot NJ
    Curr Biol; 2006 Sep; 16(18):1857-64. PubMed ID: 16979565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.