BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18523864)

  • 1. PCR analysis of the Tri13 gene to determine the genetic potential of Fusarium graminearum isolates from Iran to produce nivalenol and deoxynivalenol.
    Haratian M; Sharifnabi B; Alizadeh A; Safaie N
    Mycopathologia; 2008 Aug; 166(2):109-16. PubMed ID: 18523864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates.
    Kim HS; Lee T; Dawlatana M; Yun SH; Lee YW
    Mycol Res; 2003 Feb; 107(Pt 2):190-7. PubMed ID: 12747330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana.
    Gale LR; Harrison SA; Ward TJ; O'Donnell K; Milus EA; Gale SW; Kistler HC
    Phytopathology; 2011 Jan; 101(1):124-34. PubMed ID: 20822434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina.
    Reynoso MM; Ramirez ML; Torres AM; Chulze SN
    Int J Food Microbiol; 2011 Feb; 145(2-3):444-8. PubMed ID: 21320729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes.
    Maeda K; Tanaka Y; Matsuyama M; Sato M; Sadamatsu K; Suzuki T; Matsui K; Nakajima Y; Tokai T; Kanamaru K; Ohsato S; Kobayashi T; Fujimura M; Nishiuchi T; Takahashi-Ando N; Kimura M
    Int J Food Microbiol; 2020 May; 320():108532. PubMed ID: 32004825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by PCR assay.
    Yörük E; Albayrak G
    Mycopathologia; 2012 Jan; 173(1):53-61. PubMed ID: 21847609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals.
    Nielsen LK; Jensen JD; Rodríguez A; Jørgensen LN; Justesen AF
    Int J Food Microbiol; 2012 Jul; 157(3):384-92. PubMed ID: 22781579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium.
    Quarta A; Mita G; Haidukowski M; Logrieco A; Mulè G; Visconti A
    FEMS Microbiol Lett; 2006 Jun; 259(1):7-13. PubMed ID: 16684095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geographic distribution of phylogenetic species of the Fusarium graminearum species complex and their 8-ketotrichothecene chemotypes on wheat spikes in Iran.
    Abedi-Tizaki M; Zafari D
    Mycotoxin Res; 2017 Aug; 33(3):245-259. PubMed ID: 28612272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheat-infecting Fusarium species in Poland--their chemotypes and frequencies revealed by PCR assay.
    Stepień Ł; Popiel D; Koczyk G; Chełkowski J
    J Appl Genet; 2008; 49(4):433-41. PubMed ID: 19029692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of trichothecene chemotypes of Fusarium culmorum occurring in Europe.
    Quarta A; Mita G; Haidukowski M; Santino A; Mulè G; Visconti A
    Food Addit Contam; 2005 Apr; 22(4):309-15. PubMed ID: 16019800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae.
    Lee T; Han YK; Kim KH; Yun SH; Lee YW
    Appl Environ Microbiol; 2002 May; 68(5):2148-54. PubMed ID: 11976083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China.
    Zhang JB; Li HP; Dang FJ; Qu B; Xu YB; Zhao CS; Liao YC
    Mycol Res; 2007 Aug; 111(Pt 8):967-75. PubMed ID: 17716884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Phylogenetic Relationships, Trichothecene Chemotype Diversity and Aggressiveness of Strains in a Global Collection of
    Amarasinghe C; Sharanowski B; Fernando WGD
    Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31083494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference in TRI13 gene sequences between the 3-acetyldeoxynivalenol producing Fusarium graminearum chemotypes from Canada and China.
    Amarasinghe C; Wang JH; Liao YC; Fernando WG
    Int J Mol Sci; 2011; 12(9):6164-75. PubMed ID: 22016651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trichothecene genotypes of Fusarium graminearum from wheat in Uruguay.
    Pan D; Calero N; Mionetto A; Bettucci L
    Int J Food Microbiol; 2013 Mar; 162(1):120-3. PubMed ID: 23414559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species.
    Brown DW; McCormick SP; Alexander NJ; Proctor RH; Desjardins AE
    Fungal Genet Biol; 2002 Aug; 36(3):224-33. PubMed ID: 12135578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat.
    Pasquali M; Giraud F; Brochot C; Cocco E; Hoffmann L; Bohn T
    Int J Food Microbiol; 2010 Feb; 137(2-3):246-53. PubMed ID: 20004994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trichothecene mycotoxins associated with potato dry rot caused by Fusarium graminearum.
    Delgado JA; Schwarz PB; Gillespie J; Rivera-Varas VV; Secor GA
    Phytopathology; 2010 Mar; 100(3):290-6. PubMed ID: 20128703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting Roles of Deoxynivalenol and Nivalenol in Host-Mediated Interactions between Fusarium graminearum and Sitobion avenae.
    Drakulic J; Kahar MH; Ajigboye O; Bruce T; Ray RV
    Toxins (Basel); 2016 Nov; 8(12):. PubMed ID: 27916862
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.