These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 18524006)
1. Fresh bone marrow introduction into porous scaffolds using a simple low-pressure loading method for effective osteogenesis in a rabbit model. Yoshii T; Sotome S; Torigoe I; Tsuchiya A; Maehara H; Ichinose S; Shinomiya K J Orthop Res; 2009 Jan; 27(1):1-7. PubMed ID: 18524006 [TBL] [Abstract][Full Text] [Related]
2. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice. Liang G; Yang Y; Oh S; Ong JL; Zheng C; Ran J; Yin G; Zhou D Biomaterials; 2005 Jul; 26(20):4265-71. PubMed ID: 15683650 [TBL] [Abstract][Full Text] [Related]
3. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related]
4. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Yuan J; Cui L; Zhang WJ; Liu W; Cao Y Biomaterials; 2007 Feb; 28(6):1005-13. PubMed ID: 17092556 [TBL] [Abstract][Full Text] [Related]
5. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts. Nan K; Sun S; Li Y; Chen H; Wu T; Lu F J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839 [TBL] [Abstract][Full Text] [Related]
6. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566 [TBL] [Abstract][Full Text] [Related]
7. The effect of the microstructure of beta-tricalcium phosphate on the metabolism of subsequently formed bone tissue. Okuda T; Ioku K; Yonezawa I; Minagi H; Kawachi G; Gonda Y; Murayama H; Shibata Y; Minami S; Kamihira S; Kurosawa H; Ikeda T Biomaterials; 2007 Jun; 28(16):2612-21. PubMed ID: 17316789 [TBL] [Abstract][Full Text] [Related]
8. Osteogenesis of the construct combined BMSCs with beta-TCP in rat. Zhang M; Wang K; Shi Z; Yang H; Dang X; Wang W J Plast Reconstr Aesthet Surg; 2010 Feb; 63(2):227-32. PubMed ID: 19091642 [TBL] [Abstract][Full Text] [Related]
9. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
10. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits. Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669 [TBL] [Abstract][Full Text] [Related]
11. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
12. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
13. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Zhou Y; Chen F; Ho ST; Woodruff MA; Lim TM; Hutmacher DW Biomaterials; 2007 Feb; 28(5):814-24. PubMed ID: 17045643 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study. Sharaf B; Faris CB; Abukawa H; Susarla SM; Vacanti JP; Kaban LB; Troulis MJ J Oral Maxillofac Surg; 2012 Mar; 70(3):647-56. PubMed ID: 22079064 [TBL] [Abstract][Full Text] [Related]
15. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Gan Y; Dai K; Zhang P; Tang T; Zhu Z; Lu J Biomaterials; 2008 Oct; 29(29):3973-82. PubMed ID: 18639333 [TBL] [Abstract][Full Text] [Related]
16. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds. Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388 [TBL] [Abstract][Full Text] [Related]
17. Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II-PCL-TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques. Schumann D; Ekaputra AK; Lam CX; Hutmacher DW Methods Mol Med; 2007; 140():101-24. PubMed ID: 18085205 [TBL] [Abstract][Full Text] [Related]
18. [Induction of bone tissue on different matrices: an in vitro and a in vivo pilot study in the SCID mouse]. Kasten P; Luginbühl R; Vogel J; Niemeyer P; Weiss S; Van Griensven M; Krettek C; Bohner M; Bosch U; Tonak M Z Orthop Ihre Grenzgeb; 2004; 142(4):467-75. PubMed ID: 15346310 [TBL] [Abstract][Full Text] [Related]
19. Efficient cell-seeding into scaffolds improves bone formation. Hasegawa T; Miwa M; Sakai Y; Niikura T; Lee SY; Oe K; Iwakura T; Kurosaka M; Komori T J Dent Res; 2010 Aug; 89(8):854-9. PubMed ID: 20530727 [TBL] [Abstract][Full Text] [Related]
20. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Yu D; Li Q; Mu X; Chang T; Xiong Z Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]