BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 18524242)

  • 21. Shear stress and advanced atherosclerosis in human coronary arteries.
    Gijsen F; van der Giessen A; van der Steen A; Wentzel J
    J Biomech; 2013 Jan; 46(2):240-7. PubMed ID: 23261245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new imaging technique to study 3-D plaque and shear stress distribution in human coronary artery bifurcations in vivo.
    Gijsen FJ; Wentzel JJ; Thury A; Lamers B; Schuurbiers JC; Serruys PW; van der Steen AF
    J Biomech; 2007; 40(11):2349-57. PubMed ID: 17335832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulsatile flow in a coronary artery using multiphase kinetic theory.
    Huang J; Lyczkowski RW; Gidaspow D
    J Biomech; 2009 Apr; 42(6):743-54. PubMed ID: 19278682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery.
    Jung J; Lyczkowski RW; Panchal CB; Hassanein A
    J Biomech; 2006; 39(11):2064-73. PubMed ID: 16111686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - I. Aortic arch.
    Endo S; Goldsmith HL; Karino T
    Biorheology; 2014; 51(4-5):239-55. PubMed ID: 25281595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis.
    Frydrychowicz A; Berger A; Russe MF; Stalder AF; Harloff A; Dittrich S; Hennig J; Langer M; Markl M
    J Thorac Cardiovasc Surg; 2008 Aug; 136(2):400-7. PubMed ID: 18692649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis.
    Suo J; Ferrara DE; Sorescu D; Guldberg RE; Taylor WR; Giddens DP
    Arterioscler Thromb Vasc Biol; 2007 Feb; 27(2):346-51. PubMed ID: 17122449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Are intramural suction-squeezing effects generated by the variations in radial wall stress during each heart beat the motor of atherosclerosis? A new concept.
    Doriot PA
    Med Hypotheses; 2007; 68(4):781-98. PubMed ID: 17070656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis.
    Farmakis TM; Soulis JV; Giannoglou GD; Zioupos GJ; Louridas GE
    Curr Med Res Opin; 2004 May; 20(5):587-96. PubMed ID: 15140324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association of endothelial shear stress with plaque thickness in a real three-dimensional left main coronary artery bifurcation model.
    Papafaklis MI; Bourantas CV; Theodorakis PE; Katsouras CS; Fotiadis DI; Michalis LK
    Int J Cardiol; 2007 Feb; 115(2):276-8. PubMed ID: 16762432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method.
    Brunette J; Mongrain R; Laurier J; Galaz R; Tardif JC
    Med Eng Phys; 2008 Nov; 30(9):1193-200. PubMed ID: 18406195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A study on the compliance of a right coronary artery and its impact on wall shear stress.
    Zeng D; Boutsianis E; Ammann M; Boomsma K; Wildermuth S; Poulikakos D
    J Biomech Eng; 2008 Aug; 130(4):041014. PubMed ID: 18601456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow and atherosclerosis in coronary bifurcations.
    Giannoglou GD; Antoniadis AP; Koskinas KC; Chatzizisis YS
    EuroIntervention; 2010 Dec; 6 Suppl J():J16-23. PubMed ID: 21930484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pulsatile flow: a critical modulator of the natural history of atherosclerosis.
    Chatzizisis YS; Giannoglou GD
    Med Hypotheses; 2006; 67(2):338-40. PubMed ID: 16546326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI.
    Harloff A; Nussbaumer A; Bauer S; Stalder AF; Frydrychowicz A; Weiller C; Hennig J; Markl M
    Magn Reson Med; 2010 Jun; 63(6):1529-36. PubMed ID: 20512856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical modelling of simulated blood flow in idealized composite arterial coronary grafts: transient flow.
    Politis AK; Stavropoulos GP; Christolis MN; Panagopoulos PG; Vlachos NS; Markatos NC
    J Biomech; 2008; 41(1):25-39. PubMed ID: 17905256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wall pressure gradient in normal left coronary artery tree.
    Giannoglou GD; Soulis JV; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Med Eng Phys; 2005 Jul; 27(6):455-64. PubMed ID: 15990062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Capillary perfusion and wall shear stress are restored in the coronary circulation of hypertrophic right ventricle.
    Huo Y; Linares CO; Kassab GS
    Circ Res; 2007 Feb; 100(2):273-83. PubMed ID: 17218604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study.
    Morbiducci U; Ponzini R; Grigioni M; Redaelli A
    J Biomech; 2007; 40(3):519-34. PubMed ID: 16626721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human-like atherosclerosis in minipigs: a new model for detection and treatment of vulnerable plaques.
    Thim T
    Dan Med Bull; 2010 Jul; 57(7):B4161. PubMed ID: 20591344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.