BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 18524567)

  • 21. Thermophiles like hot T.
    Lieph R; Veloso FA; Holmes DS
    Trends Microbiol; 2006 Oct; 14(10):423-6. PubMed ID: 16934982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp. 527.
    Liang Y; Feng Z; Yesuf J; Blackburn JW
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1841-52. PubMed ID: 19504357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biorefinery: Toward an industrial metabolism.
    Octave S; Thomas D
    Biochimie; 2009 Jun; 91(6):659-64. PubMed ID: 19332104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioethanol.
    Gray KA; Zhao L; Emptage M
    Curr Opin Chem Biol; 2006 Apr; 10(2):141-6. PubMed ID: 16522374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering cellulolytic ability into bioprocessing organisms.
    la Grange DC; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1195-208. PubMed ID: 20508932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.
    Zhao H; Jones CL; Baker GA; Xia S; Olubajo O; Person VN
    J Biotechnol; 2009 Jan; 139(1):47-54. PubMed ID: 18822323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis.
    Moxley G; Zhu Z; Zhang YH
    J Agric Food Chem; 2008 Sep; 56(17):7885-90. PubMed ID: 18702466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions.
    Li T; Mazéas L; Sghir A; Leblon G; Bouchez T
    Environ Microbiol; 2009 Apr; 11(4):889-904. PubMed ID: 19128320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Screening for novel bacteria from the bioenergy feedstock switchgrass (Panicum virgatum L.).
    Plecha S; Hall D; Tiquia-Arashiro SM
    Environ Technol; 2013; 34(13-16):1895-904. PubMed ID: 24350443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].
    Lopes Ferreira N
    J Soc Biol; 2008; 202(3):191-9. PubMed ID: 18980741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals.
    Binder JB; Raines RT
    J Am Chem Soc; 2009 Feb; 131(5):1979-85. PubMed ID: 19159236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An overview on marine cellulolytic enzymes and their potential applications.
    Barzkar N; Sohail M
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6873-6892. PubMed ID: 32556412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unique sugar metabolism and novel enzymes of hyperthermophilic archaea.
    Sakuraba H; Goda S; Ohshima T
    Chem Rec; 2004; 3(5):281-7. PubMed ID: 14762828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A biophysical perspective on the cellulosome: new opportunities for biomass conversion.
    Ding SY; Xu Q; Crowley M; Zeng Y; Nimlos M; Lamed R; Bayer EA; Himmel ME
    Curr Opin Biotechnol; 2008 Jun; 19(3):218-27. PubMed ID: 18513939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofuels from microbes.
    Antoni D; Zverlov VV; Schwarz WH
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):23-35. PubMed ID: 17891391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extremely thermoactive archaeal endoglucanase from a shallow marine hydrothermal vent from Vulcano Island.
    Suleiman M; Schröder C; Klippel B; Schäfers C; Krüger A; Antranikian G
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1267-1274. PubMed ID: 30547216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial cellulose hydrolysis in anaerobic environmental subsystems--Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders.
    Zverlov VV; Schwarz WH
    Ann N Y Acad Sci; 2008 Mar; 1125():298-307. PubMed ID: 18378600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered microbial systems for enhanced conversion of lignocellulosic biomass.
    Elkins JG; Raman B; Keller M
    Curr Opin Biotechnol; 2010 Oct; 21(5):657-62. PubMed ID: 20579868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobic high-throughput cultivation method for isolation of thermophiles using biomass-derived substrates.
    Hamilton-Brehm SD; Vishnivetskaya TA; Allman SL; Mielenz JR; Elkins JG
    Methods Mol Biol; 2012; 908():153-68. PubMed ID: 22843398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.